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a b s t r a c t 

A method for modeling cubically anisotropic elasticity within the discrete element method 

is presented. The discrete element method (DEM) is an approach originally intended for 

modeling granular materials (sand, soil, and powders); however, recent developments have 

usefully extended it to model stochastic mechanical processes in monolithic solids which, 

to date, have been assumed to be elastically isotropic. The method presented here for effi- 

ciently capturing cubic elasticity in DEM is an important prerequisite for further extending 

DEM to capture the influence of elastic anisotropy on the mechanical response of poly- 

crystals, composites, etc. The system demonstrated here uses a directionally assigned stiff- 

ness in the bonds between adjacent elements and includes separate schemes for achieving 

anisotropy with Zener ratios greater and smaller than one. The model framework is pre- 

sented along with an analysis of the accessible space of elastic properties that can be mod- 

eled and an artificial neural network interpolation scheme for mapping input parameters 

to model elastic behavior. 

© 2018 Published by Elsevier Ltd. 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

The discrete element method (DEM) is a well-established computational framework originally developed for modeling

granular materials ( Cundall and Strack, 1979 ). In DEM, the discrete granular constituents of a material (in two or three di-

mensions) are represented with discrete geometric elements, e.g., spheres, ellipsoids, or polyhedra. The material is modeled

through relatively simple interactions between the elements and does not rely on overarching constitutive relations to pre-

dict bulk material response. DEM is particularly attractive because one can accurately model deformation of the material,

including its failure, with only a minimal amount of assumptions and input parameters. 

DEM modeling has been successful for modeling a wide range of phenomena in both loose and bound granular materials

( Zhu et al., 20 07, 20 08 ), including deformation ( Evans and Frost, 2010; Johnson and Hopkin, 2005 ), microstructure evolution

( Evans and Valdes, 2011; Jacobson et al., 2007 ), fracture ( Fakhimi et al., 2002; Lobo-Guerrero and Vallejo, 2005; Potyondy

and Cundall, 2004 ), creep ( Wang et al., 2008 ), and sintering ( Martin et al., 2009 ). Building on the successes for granular

materials, more recently there have been efforts in applying DEM to modeling mechanical properties of isotropic solids,
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such as glasses and polymers, that have been traditionally modeled as continua ( Andre et al., 2013; Hedjazi et al., 2012;

Jebahi et al., 2013; Kosteski et al., 2012 ). Modeling solids using DEM involves bonding the discrete elements together at

their contact points and the main motivation is to exploit several attractive features of DEM. For example, DEM models

naturally capture spatial heterogeneity and discontinuous deformations and are particularly well-suited for simulation of 

emergent phenomena such as inhomogeneous localization of deformation (e.g., shear band, void, or crack formation). 

The initial development of DEM models for solid materials has primarily focused on the fracture behavior of elastically

isotropic and homogeneous solids such as brittle polymers ( Hedjazi et al., 2012; Kosteski et al., 2012 ) and silica glass ( Andre

et al., 2013; Jebahi et al., 2013 ). More recent work has involved the development of DEM models for fiber reinforced polymer

composites where the overall composite is anisotropic and inhomogeneous, but each constituent is considered as isotropic

( Le et al., 2016; Maheo et al., 2015 ). Anisotropy naturally emerges when a uniaxial fiber orientation is used; however, as

noted by Maheo et al. (2015) carbon fibers are inherently anisotropic at the constituent level and those researchers left the

incorporation of fiber anisotropy for future work. Similarly, researchers have developed isotropic DEM models to simulate

the fatigue failure of metals ( Hahn et al., 2013 ); however, the metal microstructure and the cubic elastic anisotropy were

not considered. 

As mentioned above, a key strength of DEM modeling is its ability to capture emergent damage phenomena and mi-

crostructure evolution in granular materials. It has been suggested that for DEM to achieve similar success for modeling

solid materials with inherent elastic anisotropy, that local anisotropy must be included to achieve the correct physics of the

damage phenomena ( Truszkowska et al., 2017 ). Accordingly, this work represents a first step in adapting DEM to model solid

materials with cubic crystal anisotropy, including many metal alloys and ceramics. In this approach, cubic elastic anisotropy

is imposed on a bonded assembly of spherical discrete elements by defining the bond stiffnesses with spheroidal-shaped,

orientation-dependent distributions that ensure the correct symmetry of the elastic stiffness tensor. While not suitable for

all cubic materials, the results presented herein demonstrate that this method can be used for numerous real cubic materials

with small to moderate anisotropy ratios. 

2. Theoretical foundation of the discrete element method 

The discrete element method was originally developed by Cundall (1971) for the modeling of rocks and later expanded

to soils ( Cundall and Strack, 1979 ). In this introduction, we present major points of the method, while for details of the

implementation the reader is referred to Potyondy and Cundall (2004) . In this work, the three-dimensional version of the

DEM with spherical elements is employed. 

Traditional DEM is predicated upon the simultaneous solution of Newton’s equations of motion for each body in an

assembly of discrete particles. Contacting particles interact via simple constitutive relations. Particle overlap is allowed at

contacts (the so-called soft contact approach), but these overlaps are small relative to particle size (e.g., less than 1%). A

given calculation cycle begins by identifying contact points and identifying their unit normals. 

Fig. 1 shows two interacting spherical elements and an element interacting with a rigid planar wall. The contact plane

normal ( n c ) is defined by the line segment between the element centroids x p i or element centroid and nearest point on the

wall, x w 

. The contact plane spans the contact point x c . N.B.: In DEM modeling, contacts may be either real or virtual . Real

contacts occur when two bodies are actually in contact or overlapping. Virtual contacts exist when two bodies are proximal

but not yet touching (typically, when their surface separation is 10 −6 times the mean diameter of the two entities). In

unbonded assemblies, this serves to provide computational efficiency in the contact detection algorithm (typically the most

expensive part of the calculation). In bonded assemblies, however, this separation has physical meaning – two elements are

able to have a physical separation, yet still be connected via a bond between them. 

Herein, the behavior of element contacts is described by a linear contact law. The normal force between two contacting

elements is given by F = −kx where k is particle stiffness and x is contact overlap. If the two elements are bonded (as they

are in this work), an additional normal force is generated due to the presence of the bond, as described subsequently. Shear

forces at contacts are linear and formulated incrementally. 

The resultant force (and subsequently, the equation of motion) for a single element is defined as: 

F = 

N c ∑ 

i =1 

F c i = m a , (1) 

where the total force F is the sum of forces F c i due to the i th neighboring element; N c is the total number of contacts

the element has formed, m is element mass, and a is the acceleration. Similarly, the total moment, M , experienced by an

element is: 

M = 

N c ∑ 

i =1 

M c i = I ˙ ω = 

(
2 

5 

m R 

2 
)

˙ ω , (2) 

where M c i is the moment on the i th element contact, I is the moment of inertia, ˙ ω is the angular acceleration, and we ex-

ploit the fact that, for spherical elements, moment is directionally independent. Each contact force, F c i , and moment, M c i , is

resolved into a normal component acting along the contact plane normal, n c , and shear component that lies in the plane. As

mentioned previously, in simulations of unbound granular materials forces are related to the overlap of impinging elements
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Fig. 1. DEM components: (a) two interacting elements, (b) an element interacting with a wall, and (c) two elements bonded with a parallel bond. 
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as shown in Fig. 1 . Positive overlap generates repulsive force. This sign convention is natural for unbonded materials where

contacts only work in compression and so there are no tensile forces, but it is the reverse of the convention typically used

in solid mechanics. 

To model monolithic materials, elements can be bonded together by replacing the asymmetrical contact laws with co-

hesive interactions that can support tension. A common scheme for this is the parallel bond developed by Potyondy and

Cundall (2004) and shown in Fig. 1 (c). The parallel bond represents two welded elements as a cylinder of material running

between the element centers that can transmit both moment and force between the elements. The constitutive law for the

parallel bond is used in the differential form: 

dF 

dt 
= k n A 

du n 

dt 
+ k s A 

du s 

dt 
, 

dM 

dt 
= −k n J 

d�θt 

dt 
− k s I 

d�θb 

dt 
, (3) 

where the force, F , due to the normal, u n , and shear, u s , displacements, and the moment, M , due to the difference in the

twisting, �θt , and bending, �θb , rotations of the two elements are related by normal, k n , and shear stiffness, k s . The ge-

ometric terms A, I , and J are the bond’s cross-sectional area, moment of inertia, and polar moment of inertia, respectively.

For unbonded elements the interaction range is set by the element radii, as discussed previously. Parallel bonds, however,

can be installed between any two elements with any equilibrium length, and thus once a DEM assembly is parallel bonded

the elements should no longer be considered to be spherical. In this work, assemblies of elements were generated by sim-

ulating the dynamic packing of unbonded elements interacting through contact laws. Once a stable packing was achieved,

the element-element contact laws were turned off and parallel bonds installed between all pairs of elements with a spacing

less than a cutoff separation referred to as the gap parameter , g c max , so that a bond is installed between elements i and j

if: 

g c max 
≥‖ x p2 − x p1 ‖ −( R 1 + R 2 ) , (4) 

where x p 1 and x p 2 are positions of the elements’ centroids and R 1 and R 2 the element radii ( Fig. 1 ). In this work, the

geometric terms A, I , and J are defined by the bond radius which is defined as the radius of the smaller element, R b =
min { R (1) , R (2) } or the radius of the element at an element-wall contact. 

Each simulation step in DEM consists of computing the total forces and moments for every element using Eqs. (1) and

(2) . From these, accelerations, translational and angular velocities, and new element positions are computed with the Verlet

algorithm ( Verlet, 1967 ). 

3. Introduction of cubic crystal anisotropy in DEM 

The elastic response of cubically symmetric crystals is defined by the fourth rank elastic stiffness tensor with three

independent stiffness components C 11 , C 12 , and C 44 to provide the following stress-strain relationship: ⎛ 

⎜ ⎜ ⎜ ⎜ ⎝ 

σxx 

σyy 

σzz 

σyz 

σxz 

σxy 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎠ 

= 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎝ 

C 11 C 12 C 12 0 0 0 

C 12 C 11 C 12 0 0 0 

C 12 C 12 C 11 0 0 0 

0 0 0 C 44 0 0 

0 0 0 0 C 44 0 

0 0 0 0 0 C 44 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎠ 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎝ 

ε xx 

ε yy 

ε zz 

ε yz 

ε xz 

ε xy 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎠ 

. (5) 

This relatively simple expression belies that cubically symmetric materials have a complex directionally dependent de-

formational response to a load. To present the rationale behind the approach set forth here for replicating this within DEM,

it is necessary to describe the subtleties of cubic anisotropy in more depth. The extra variable needed to describe elastic

response of cubic materials over isotropic media is often expressed as the Zener anisotropy ratio, Z = 

2 C 44 
C 11 −C 12 

. This describes

a material’s deviation from isotropic behavior with a ratio of one indicating that the material is isotropic. Fig. 2 shows the

directionally dependent stiffness of three cubic materials with Z ranging from less than one to greater than one. The materi-

als’ stiffness in response to a uniaxial normal load varies with crystal loading direction (the left most plot in each sequence

in Fig. 2 ). Moreover, on any surface the material will have a hard and soft direction of shear. These soft and firm shear

stiffnesses are plotted in the second and third plots in each sequence, respectively. The right-most plots show the soft and

stiff shear stiffnesses overlaid, demonstrating that the soft and stiff shear stiffnesses are degenerate on the high symmetry

{100} and {111} planes. In these plots, it can be seen that materials with an anisotropy ratio Z < 1 have the largest normal

stiffness along 〈 100 〉 direction and the highest shear stiffness on {111} planes, while materials with Z > 1 have the largest

normal stiffness along 〈 111 〉 direction and largest shear stiffness on {100} . 

The goal of this work is to capture cubic elasticity in DEM using the parallel bond formalism that is already implemented

in many DEM software packages. In these packages, the user may assign a normal and shear stiffness for individual parallel

bonds and thus the task becomes determining a method for assigning these stiffnesses based on bonds’ initial orientations

relative to a set of imagined crystallographic axes such that the emergent collective response of the bonded assembly is

described by the stiffness tensor in Eq. (5) . 
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Fig. 2. Elastic indicatrix for strontium fluoride, magnetite, and nickel. In each plot, the left most plot is the directionally dependent stiffness of the materials 

in response to a normal stress. The middle two plots show the shear stiffness along the soft and stiff shear directions on the plane normal to the polar 

direction, and the right most plot shows these shear stiffnesses overlaid. In the upper plots (labeled “Plane Strain”) the stiffness is in response to an imposed 

uniaxial normal or in-plane shear strain while keeping the other strains values at zero, and the lower plots labeled “Plane Stress” are the stiffnesses in 

response to an imposed uniaxial normal or in-plane shear stress while keeping the other stress values at zero. In all plots, the values of stiffness are plotted 

scaled by the materials’ C 11 . The Zener ratios for strontium fluorite, magnetite and nickel are 0.78, 1.22, and 2.64, respectively. As the Zener ratio transitions 

from less than to greater than one, the materials’ highest normal stiff axis transitions from 〈 100 〉 to 〈 111 〉 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As the packing of elements in DEM is random, and on average isotropic, it is presumed that the cubic response must

arise from the collective behavior of the assembly rather than being met at each individual element. Within this approach

there are three steps of reasoning that can be used guide the selection of a directionally dependent function for assigning

bond stiffnesses: From von Neumann’s principle, the angular dependence of the stiffness distribution must possess cubic

symmetry, that is, four axes of threefold rotational symmetry about the < 111 > directions of the imagined crystal. Second,

the stiffness tensor in Eq. (5) possesses only three independent variables, of which only one describes the deviation from

isotropic elasticity. With only one degree of anisotropy it is conjectured that any angular stiffness function with the proper

rotational symmetry could give rise to collective behavior that is cubically anisotropic. Finally, in cubic materials there is a

qualitative change in the directionally dependent normal stiffness as the Zener anisotropy ratio, Z , transitions from smaller

to greater than one. As can be seen in Fig. 2 , for Z < 1 the normal stiffness is maximal along < 100 > , while for Z > 1 the

modulus is stiffest along < 111 > . It is therefore presumed that changing the angular distribution of parallel bond stiffnesses

from being maximal along < 111 > to maximal along < 100 > will alter the direction a system’s deviation from isotropic

elasticity. 

To meet these criteria, one could construct angular bond stiffness functions from a sum of suitably symmetrized spherical

harmonic functions, and then iterate the shape of the angular distribution to explore the angular function space. However,

rather than doing this, the goal of this article is to present a proof of concept that DEM can be used to model cubically

elastic media. To this end, a more pragmatic approach was chosen, with two very simple piecewise functions defined as the

external surface of a set of overlapping prolate spheroids (as shown in Fig. 3 ). The shape of the distribution is described by

a single parameter a that describes the aspect ratio (major to minor axes) of a family of spheroid with constant volume.

One function is maximal along < 100 > and is composed of three spheroids with major axes along the < 100 > directions,

while the second function, maximal along < 111 > , is composed of 4 co-centered spheroids with principal axes along the

four < 111 > directions. In each case, the stiffness along a direction is given by the maximum radius of the three or four

spheroids in which the radius is given by the equations: 

k ( n , a ) = k 0 ( A b /L b ) r m 

( n , a ) , (6)

k 0 ( A/L ) = 

A b 

L b 
k l , (7)

and the dimensionless parameter 

r m 

( n , a ) = max ( { r 1 , r 2 , ..., r N } ) , (8)

with n the initial contact normal direction, A b the bond area, L b the bond length, and k l the stiffness magnitude. Bond length

is defined as the sum of element radiuses, L b = R 1 + R 2 . N indicates the number of spheroids – 3 or 4 in this work. For the

case of N = 3 spheroids aligned along 〈 100 〉 : 

r i 1 = 

a 
2 
3 

i √ 

n 

2 
x + 

(
n 

2 
y + n 

2 
z 

)
a 2 

i 

(9)
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Fig. 3. (a) Shows two piecewise angular functions with cubic symmetry defined as the outer surface of overlapping spheroids. The upper left function is 

constructed from three identical spheroids with major axes along the 〈 100 〉 directions and the the function of the lower right is formed by four identical 

spheroids with major axes along the 〈 111 〉 directions. (b & c) The angular distributions of parallel bond normal stiffness (blue) and shear stiffness (gold) as 

a function of the model parameters a n , a s , and a k plotted on the normalized log scale (see text for explanation). In this space αn , and αs span from 0.029 

to 3.5 and αk spans 0.078 to 5.5. Figure (b) is for modeling materials with Z < 1 which are stiffest along the 〈 100 〉 directions and so the normal stiffness is 

represented by three spheroids aligned along these directions. Figure (c) shows stiffness distributions for modeling materials with Z > 1 which are stiffest 

along the 〈 111 〉 directions, and so the normal stiffness is represented by four spheroids aligned along these directions. (For interpretation of the references 

to color in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

r i 2 = 

a 
2 
3 

i √ 

n 

2 
y + 

(
n 

2 
x + n 

2 
z 

)
a 2 

i 

(10) 

r i 3 = 

a 
2 
3 

i √ 

n 

2 
z + 

(
n 

2 
y + n 

2 
x 

)
a 2 

i 

(11) 

where n x , n y , and n z are the x, y , and z components of unit vector n . For the case of N = 4 spheroids aligned along 〈 111 〉 the

spheroid radii are given by: 

r j1 = 

a 
2 
3 

j √ 

1 
3 

[
( n x − n y + n z ) 

2 + 2 

(
n 

2 
x + n x n y + n 

2 
y − n x n z + n y n z + n 

2 
z 

)
a 2 

j 

] (12) 

r j2 = 

a 
2 
3 

j √ 

1 
3 

[
( n x + n y − n z ) 

2 + 2 

(
n 

2 
x − n x n y + n 

2 
y + n x n z + n y n z + n 

2 
z 

)
a 2 

j 

] (13) 

r j3 = 

a 
2 
3 

j √ 

1 
3 

[
( −n x + n y + n z ) 

2 + 2 

(
n 

2 
x + n x n y + n 

2 
y + n x n z − n y n z + n 

2 
z 

)
a 2 

j 

] (14) 

r j4 = 

a 
2 
3 

j √ 

1 
3 

[
( n x + n y + n z ) 

2 + 2 

(
n 

2 
x − n x n y + n 

2 
y − n x n z − n y n z + n 

2 
z 

)
a 2 

j 

] (15) 

In this way, the anisotropic behavior of the DEM model is controlled by three independent tuning parameters: a n and a s ,

the anisotropy in the system of spheroids used to assign the normal and shear stiffnesses, respectively, and a k = k n / k s , the

ratio of the normal and shear stiffness magnitudes. In Appendix A , a general analytic model is presented for determining

the elastic moduli of a material with angularly dependent stiffness functions if the bonds are all deformed uniformly due

to a homogeneous deformation of the assembly. In Appendix B , the model is used to prove that that the stiffness functions

based on overlapping spheroids Eqs. (5) –(14) result in cubically anisotropic elasticity. 

The expression chosen to represent the spheroids has the property of describing spheroids of constant volume indepen-

dent of a. In exploring the space of model parameters, it is useful to define log normalized parameters α as the log of a

shifted and scaled parameter that varies from 0 to 1 so that generally 

α = 

log ( a ) − log ( a min ) 

log ( a max ) − log ( a ) 
(16) 
min 
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The plots in Fig. 3 show the angular dependence of normal stiffness (blue) and shear stiffness (gold) assigned to parallel

bonds in the Z < 1 and Z > 1 models at the vertices of the domain of log-normalized model parameters. In this work, only

the space of model parameters was explored with a n and a s running from 0.022 to 5 and a k ranging from 0.005 to 1.

Parameters outside this range would lead to unrealistically exaggerated shapes of the spheroid distributions. These extreme

limiting shapes are shown on Fig. 3 and include cases where the shear stiffness becomes much smaller than the normal

stiffness or the spheroid distribution becomes very narrow and pointy along its major directions. 

4. Methods 

4.1. Generating and deforming an element assembly 

Element assemblies were generated by randomly positioning elements in a cubic box until a predefined void fraction

of 0.40 was achieved. The void fraction was selected to be approximately halfway between the best estimates for the ran-

dom close pack (RCP) case of 0.36 and the jamming transition of 0.44 where an unbonded assembly will become unstable

and readily flow. Element radii were randomly drawn from a uniform distribution with a range �R = R̄ /6 where R̄ is the

arithmetic mean element radius. 

Mass-scaling was employed to improve calculation speed; in this approach, element sizes are increased by several orders

of magnitude to increase the critical time step for numerical stability (see, e.g., ( Belheine et al., 2009; Evans and Frost, 2007;

Ning et al., 2015; Yun and Evans, 2011; Zhao et al., 2017 )). Simulations were performed in the absence of gravity so that the

increased element sizes do not generate excessive self-weight within the assembly. Changing the particle size also affects

the dimensionless inertial number, I , which is used to define the line of demarcation between quasi-static and dynamic

simulations ( Roux and Chevoir, 2005 ): I = ˙ γ d/ 
√ 

P/ρ , where ˙ γ is strain rate, d is element diameter, P is pressure, and ρ is

particle density. Simulations with an inertial number less than 10 -3 are quasi-static. In the current work the average inertial

number is lower than 5 × 10 −4 . 

After the model domain was randomly populated with elements the system was relaxed by simulating the evolution of

the system with damped dynamics until element accelerations were minimized. After equilibration, all neighboring elements

within a chosen cutoff distance (called the gap cutoff parameter, g c, max ) were fused together with parallel bonds to form

a contiguous network, and then the bounding walls were removed. Stress equilibration is not necessary as once parallel

bonds are installed the elements’ contact stiffnesses are removed. At this point the elements cease to be particle-like and

are instead a trellis of bonds , all initially fully relaxed with no internal forces or moments. The total number of bonds formed

is a function of the gap cutoff parameter. If the gap between elements is smaller than the predefined gap parameter, g c, max ,

a bond will form between these elements. The influence of the gap cutoff parameter on the bonded network, the element

coordination number, and the resulting elastic response was verified for a number of gap cutoff parameter values from

1.7 × 10 −4 R̄ to 0.8 R̄ . 

The stiffnesses of individual bonds were assigned based on the bonds’ initial orientation according to the spheroid distri-

butions described in Eqs. (6 )–(15) . Elements that were initially bonded to box walls were used as “grip elements” to apply

the elastic deformation, as discussed subsequently. A typical assembly is shown in Fig. 4 . 

4.2. Measuring average stresses and strains in the assembly 

Stresses and strains in the assembly were computed using spherical measurement volumes ( O’Sullivan, 2011; Potyondy

and Cundall, 2004 ). Their radii and placement were random, the former being user-defined and the latter being constrained

to exist fully within the assembly. Specifically, stresses and strain rates were measured and strains were computed through

time integration of the measured strain rates. Stresses and strain rates were averaged over all measurement spheres. A total

of 50 0 0 measurement spheres were typically used, each with a radius that corresponds to 6 times mean element radius. On

average, 165 elements contributed to the stress/strain measurement of each measurement sphere. 

4.3. Determining the size of the minimum representative volume 

The minimum representative volume (MRV) is the smallest assembly with a sufficient number of elements to produce an

average macroscopic response independent of assembly size. The MRV is typically evaluated by the convergence of effective

properties, in this case the averaged C 11 , C 12 and C 44 constants of a cubic material. The MRV was determined as the next-

to-smallest assembly size in which variation in properties from one assembly to another originated solely from uncertainty

in the randomly placed measurement spheres rather than the variations in assembly packing. The MRV was found for an

assembly with model parameters described in Section 4.1 . The gap parameter was 0.17 R̄ which corresponded to a stable

element coordination number of C n ≈ 8. Tested assemblies had between 50 0 0 and 80,0 0 0 elements. 

4.4. Computing the stiffness tensor 

MRV assemblies were used for computing the full stiffness tensor. Element assemblies were deformed along the six

independent strain paths (three uniaxial strain and three pure shear) up to a maximum strain of 10 −3 . During each of
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Fig. 4. Properties of a typical modeled assembly: a) 3D representation, dark blue elements are the grip elements; b) the probability distribution of the 

x, y and z compontents of bond orientations. The peak in the distribution is due to the bonds between elements at the assebly boundary being aligned 

parallel to the walls; c) bonds as seen on a cross-section of the assembly colored by their anisotropic shear stiffnesses, [Pa/m]; d) measurement spheres. 

(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

these simulated deformations the assembly’s internal stress and strain state was determined using measurement spheres as

described previously. 

Uniaxial compression simulations were performed by setting the grip element velocities to 

u = − ˙ γ [ x c 0 0 ] , (17) 

u = − ˙ γ [ 0 y c 0 ] , (18) 

u = − ˙ γ [ 0 0 z c ] , (19) 

for deformations ɛ (1) , ɛ (2) , and ɛ (3) , respectively. For the cases of pure shear deformation, strains ɛ (4) , ɛ (5) , and ɛ (6) are im-

posed by grip element velocities of: 

u = ˙ γ [ 0 z c y c ] , (20) 

u = ˙ γ [ z c 0 x c ] , (21) 

u = ˙ γ [ y c x c 0 ] , (22) 

with ˙ γ = 0 . 2 1 / s . For each of the six deformations linear fits of stress/strain vs. time were performed to each of the six

stress/strain components so that the i th and j th components of stress and strain during the k th deformation are described

by: 

σ ( k ) 
i 

= a ( 
k ) 

i 
t, (23) 

ε ( k ) 
j 

= b ( 
k ) 

i 
t, (24) 

where the slopes a and b are fitting parameters. The stress and strain are related via the stiffness tensor giving six sets of

six coupled equations: 

σ ( k ) 
i 

= C ij ε 
( k ) 
j 

, i, j, k = 1 . . . 6 . (25) 
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Table 1 

Ranges of parameters used in determining the accessible anisotropic space. 

Material a n a s a s / a n k n k n / k s 

Z > 1 0.01–5.0 0.01–100 0.01–500 1 × 10 13 1–50 0 0 

Z < 1 0.01–10.0 0.01–50 0.01–500 1 × 10 13 1–50 0 0 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(36 equations in total), which can be written also in terms of the fitted slopes: 

a ( 
k ) 

i 
= C ij b 

( k ) 
j 

, i, j, k = 1 . . . 6 . (26)

The stiffness tensor must be symmetric about its diagonal ( C ij = C ji ) and so contains only 21 independent elements. To

reduce the system to 21 independent equations, the equations for stress elements under conjugate deformation paths were

added together to obtain equations: 

a ( 
k ) 

i 
+ a ( 

i ) 
k 

= C ij b 
( k ) 
j 

+ C kj b 
( i ) 
j 

, for i ≤ k. (27)

The motivation for this approach is to impose only the conditions on C ij required to satisfy Newton’s third law. If the

assembly is truly behaving as a cubically anisotropic elastic medium, it should be evident from computing the full stiffness

tensor. The systems of 21 coupled equations in ( (26) –(27) ) were solved numerically using the generalized minimal residual

(GMRES) method in MATLAB ( Saad and Schultz, 1986 ). The results were rounded to 0.1 GPa. 

Stiffness tensor components obtained with DEM have a certain amount of statistical noise because they are obtained

with a randomly distributed bond network. This introduces slight differences in the values of elastic constants that would

be otherwise equal, and similarly gives small non-zero values when they must be zero for a continuum. Uncertainties were

quantified as the largest deviation of each group of constants from the mean value of a symmetrized tensor. This included

the average magnitude of small non-zero terms in the stiffness tensor that should be equal to zero. 

By computing the 21 independent elements of the stiffness matrix explicitly, and demonstrating the correct rotational

invariance of the properties, it was shown that the assemblies’ properties possessed the correct cubic symmetry. Once this

was established further calculations of elastic moduli were performed using a single deformation with simultaneous com-

pression along y with shear applied in the xz plane. This deformation was imposed by assigning a velocity u to the external

grip elements based on their position relative to the center of the assembly, x c = [ x c , y c , z c ]: 

u = ˙ γ
[ 

z c 
y c 

2 

x c 

] 
, (28)

where ˙ γ is the strain rate. Simulations were continued until the strains reached values between 1 × 10 −5 and 1 × 10 −3 . 

4.5. Determining the accessible anisotropic space 

Parameter sweeps were used to determine the applicability of the proposed approach for modeling cubic materials. Pa-

rameter sweeps included changing values and ratios of the a i and a j constants ( Eqs. (9) –(15) ) as well as normal to shear

stiffness ratios. Simulations were performed for materials with Z > 1 and Z < 1. The limits of the anisotropic behavior were

determined and results were compared with known values for common cubic materials ( Simmons and Wang, 1971 ). Table 1

shows ranges of parameters used in the sweeps. 

5. Results 

5.1. Minimum representative volume and gap cutoff parameter 

The minimum representative volume (MRV) was determined using a representative set of spheroid parameters for a mate-

rial with a Zener ratio larger than one. Normal stiffness followed the 4 spheroid distribution with a n = 4.31 and k n = 1 × 10 13

( Eq. (6) and Eqs. (12) –(15 ) and shear stiffness the three spheroid distribution with a s = 10.0 and k s = 3.55 × 10 12 ( Eq. (6) and

Eqs. (9) –(11) . The influence of the gap cutoff parameter on bonding and the elastic response was also quantified. The varia-

tion in elastic constants with the number of elements in an assembly is shown in Fig. 5 a and MRV was chosen to measure

30,700 elements. Also, the coordination number as a function of maximum gap size ( Eq. (4) ) is shown in Fig. 5 b. 

5.2. Description of the model assembly 

The standard assembly used in subsequent simulations consisted of 30,700 elements held together with 118,008 bonds

and an average coordination number of 7.7. This results in a cubic assembly with sides of length 60.0 R̄ . Fig. 6 shows the

elastically deformed assembly and Fig. 7 shows an example elastic response of the assembly. 

The stress-strain curves in Fig. 7 generally follow a linear trend, except for a very small region at the beginning of the

simulation. Final strains were at least two orders of magnitude larger in the directions of specified deformations relative to

the unstrained directions. 



372 A. Truszkowska et al. / Journal of the Mechanics and Physics of Solids 121 (2018) 363–386 

Fig. 5. (a) Normalized elastic constants as a function of element number. MRV was chosen to have 30,700 elements. Values were normalized by those 

obtained with the largest assembly (82,238 elements) (b) Coordination number of a MRV assembly as a function of maximum gap parameter. Gap cutoff

parameter was 0.17 ̄R and yields a stable element coordination number of 7.7. 

Fig. 6. MRV assembly compressed in the y direction and sheared in xz . Elements are color-coded by the magnitude of element displacement in units of 

the mean element radius R̄ . (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 7. Stresses-strain curves in the deformation directions, (a) normal and (b) shear. Stress-strain curves are linear besides in the initial part of the 

simulation. 
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5.3. Full stiffness tensor 

The full stiffness tensor was obtained for a representative case of anisotropy parameters, the same as the one used for

the MRV. The full stiffness tensor the DEM assembly was measured to be: 

C ij = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎝ 

75 . 5 30 . 4 30 . 4 0 . 05 −0 . 3 0 . 4 

30 . 4 76 . 3 30 . 9 0 . 2 0 . 05 0 . 2 

30 . 4 30 . 9 76 . 1 0 . 2 0 . 05 0 

0 . 05 0 . 2 0 . 2 28 . 7 0 0 . 05 

−0 . 3 0 . 05 0 . 05 0 28 . 5 0 . 05 

0 . 4 0 . 2 0 0 . 05 0 . 05 28 . 6 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎠ 

GPa , (29)

Averaging the cubically equivalent stiffness components and setting to zero those that would be zero under cubic sym-

metry gives the tensor: 

C ij = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎝ 

76 . 0 30 . 6 30 . 6 0 0 0 

30 . 6 76 . 0 30 . 6 0 0 0 

30 . 6 30 . 6 76 . 0 0 0 0 

0 0 0 28 . 6 0 0 

0 0 0 0 28 . 6 0 

0 0 0 0 0 28 . 6 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎠ 

GPa . (30)

Here C̄ 11 = 

( C 11 + C 22 + C 33 ) 
3 , C̄ 12 = 

( C 12 + C 13 + C 23 ) 
3 , and C̄ 44 = 

( C 44 + C 55 + C 66 ) 
3 . The variations in stiffness of the cubically equivalent

element, including the ones that would be zero, provides a method for quantifying uncertainty. The largest uncertainty in

this set of stiffness components is in C 11 and C 12 values and measures 0.3 GPa. The C 44 uncertainty is 0.1 GPa whereas the

mean magnitude of components that should otherwise be zero measures 0.15 GPa. These uncertainties are below detection

in typical mechanical deformation experiments. The symmetry and cubic nature of the tensor presented in Eqs. (29) –(30)

implies that to use the proposed approach only two deformations are needed to describe a cubic material in the model. 

5.4. Rotational invariance of the stiffness tensor 

The same model discussed in Section 5.3 was used to assess the rotational invariance of the elastic properties. The

rotation matrix applied to obtain the rotated stiffness tensor is presented in Eq. (31) : 

R = 

( −0 . 3062 −0 . 9186 0 . 2500 

0 . 8839 −0 . 1768 0 . 4330 

−0 . 3536 0 . 3536 0 . 8660 

) 

(31)

which corresponds to angles of 60 °, 30 °, and 45 ° about the x, y , and z axes, respectively. Rotating the stiffness tensor

Eq. (30) with this transformation matrix gives the tensor: 

C ij = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎝ 

80 . 3 29 . 2 27 . 7 0 . 5 −3 . 0 1 . 3 

29 . 2 79 . 2 28 . 8 1 . 9 1 . 1 −2 . 6 

27 . 7 28 . 8 80 . 7 −2 . 4 1 . 9 1 . 2 

0 . 5 1 . 9 −2 . 4 26 . 8 1 . 2 1 . 1 

−3 . 0 1 . 1 1 . 9 1 . 2 25 . 7 0 . 5 

1 . 3 −2 . 6 1 . 2 1 . 1 0 . 5 27 . 2 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎠ 

GPa . (32)

This matrix is the stiffness tensor if the assembly is rotated by R 

−1 . We can verify that the elastic behavior is rotationally

invariant by leaving the assembly unrotated, and computing the DEM stifness tensor with the spheroid distributions rotated

by R 

−1 . The result is: 

C ij = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎝ 

80 . 2 29 . 2 27 . 5 0 . 7 −3 . 4 1 . 8 

29 . 2 79 . 4 29 . 1 2 . 3 0 . 7 −2 . 4 

27 . 5 29 . 1 81 . 2 −2 . 2 2 . 0 1 . 4 

0 . 7 2 . 3 −2 . 2 26 . 9 1 . 2 1 . 2 

−3 . 4 1 . 0 2 . 0 1 . 2 25 . 7 0 . 5 

1 . 8 −2 . 4 1 . 2 1 . 2 0 . 5 27 . 2 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎠ 

GPa , (33)

which is in good agreement with Eq. (32) within the uncertainty established from Eqs. (29) and (30) . Rotating Eq. (33) back

and diagonalizing as in case of full stiffness tensor ( Eq. (30) ) yields: 
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Table 2 

Elastic response of DEM assemblies generated with different random 

seeds. 

Parameter set Value Sample 1 Sample 2 Sample 3 

Set 1 C 12 / C 11 0.30 0.30 0.31 

C 44 / C 11 0.43 0.44 0.44 

Set 2 C 12 / C 11 0.30 0.30 0.31 

C 44 / C 11 0.42 0.42 0.42 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C ij = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎝ 

75 . 9 30 . 8 30 . 8 0 0 0 

30 . 8 75 . 9 30 . 8 0 0 0 

30 . 8 30 . 8 75 . 9 0 0 0 

0 0 0 28 . 8 0 0 

0 0 0 0 28 . 8 0 

0 0 0 0 0 28 . 8 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎠ 

GPa , (34) 

with uncertainty in C 11 , C 12 , and C 44 of 0.7, 0.7, and 0.1 GPa, respectively. The average value of the non-zero terms that

should otherwise be zero is 0.2 GPa. The tensors in Eq. (30) and Eq. (34) agree to within 0.1, 0.2, and 0.2 GPa for C 11 , C 12 ,

and C 44 , implying rotational invariance of the proposed anisotropy approach. 

5.5. Reproducibility with different assemblies 

To establish that the model’s elastic behavior is robustly reproducible with different element assemblies the stiffness

tensor calculations were repeated for two additional DEM samples generated with different random seeds. These different

element assemblies had the same average packing density and a similar total number of elements, (30,714 and 30,718

compared to original 30,700). For all three assemblies, the elastic response was obtained using two different sets of model

parameters that yielded the elastic constant ratios of C 12 / C 11 = 0.3 and C 44 / C 11 = 0.43. Results are shown in Table 2 . The

elastic constants are very close for the three different assemblies in case of both parameter sets indicating that the model

is reproducible and can be readily applied to various DEM assemblies. 

5.6. Accessible anisotropic space 

In order to determine the space of cubic elastic anisotropy that can be accessed by the DEM model, simulations were

performed to compute a random cloud of elastic moduli for model parameters selected with a uniform random sampling

of the normalized log space. The resulting data cloud showing the anisotropic space accessible by both the Z < 1 and Z > 1

models is shown in Fig. 8 . For reference, this accessible space is plotted alongside the literature reported moduli for a wide

range of cubic materials ( Simmons and Wang, 1971 ). The domain of the elasticity space that can be accessed here is a

property of the granular model and is not expanded by extending the range of the model parameters sampled. 

5.7. Obtaining specific model parameters 

Because the space of model input parameters is three dimensional while the space of the resulting model’s normalized

elastic moduli is two dimensional, many different model parameters sets can lead to the same anisotropic elastic behavior.

To elucidate the mapping from model parameters to emergent elastic moduli (and to enable efficient determination of

model parameters for a desired elasticity) interpolation schemes have been developed based on an artificial neural network

(ANN). Feed forward ANNs with two hidden layers of nine neurons each were trained to a randomly selected set of 70% of

the log normalized model parameters used to compute moduli plotted in Fig. 9 . For both the Z < 1 and the Z > 1 models,

twenty ANNs were trained starting from different initial conditions, and the variance between the ANNs was used to test

the quality of training and uncertainty in the interpolation. The trained ANNs reproduced a validation dataset (half of the

remaining data selected at random) with an R-squared value better than 0.997 — as well as should be expected for the

uncertainty in the computed elastic moduli. Using these ANN to explore the model parameter space in Figs. 9 and 10 shows

contour surfaces in the log-normalized parameter space that have constant elastic moduli — Fig. 9 shows isosurfaces of

dimensionless C 12 and C 44 , while Fig. 10 shows isosurfaces of Zener ratio and constant Poisson ratio along 〈 100 〉 , defined as

C 12 /( C 11 + C 12 ). These plots show that for any desired elastic response there are a range of possible model parameters that

could reproduce it. The question of which alternative a user should choose will be discussed in more detail. 

6. Discussion 

6.1. Limits of the accessible domain of elastic properties 

It is clear from the data cloud plotted in Fig. 8 that there is only a limited domain of the elasticity space that can be

accessed by the DEM models, and there are many known cubic materials possessing elastic constants that fall outside this
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Fig. 8. Comparison of elastic behavior with cubic materials. Red dots show literature reported elastic constants for a variety of cubic metals, ceramics, and 

oxides ( Simmons and Wang, 1971 ). The open circles show the elastic moduli obtained with the DEM model from a random sampling of the αn , αs , and αk 

normalized log space. In this plot, the vertical dot-dashed grid lines are contours of constant Poisson ratio in the 〈 100 〉 direction, C 12 /( C 11 + C 12 ) in steps of 

0.1. The dashed black lines emanating radially from the bottom right are contours of constant Zener ratio (in steps of 0.25), with the solid line showing the 

contour for Zener ratio = 1, and thus isotropic behavior. The red line cutting from bottom left to top right is the line along which the Cauchy symmetry 

relation, C 12 = C 44 , holds true. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

domain. It is thus worthwhile to consider what sets the fundamental limits of the DEM model, and what this tells us more

generally about the nature of atomic bonding. The domain of accessible moduli can be roughly described as having Zener

ratios between 0.65 and 1.5 with C 44 > 0.6 C 12 . The surfaces of constant modulus in Fig. 9 show that in both the Zener ratio

> 1 and the Zener ratio < 1 models the strongest influence on elastic properties is the change in the ratio of shear to normal

stiffness, a k , with C 12 diminishing and C 44 increasing as a k is increased. In the Zener ratio < 1 model the isosurfaces for C 12

( C 44 ) are concave up (down) with varying anisotropy of the normal stiffness distribution. These surfaces have a valley in the

log normalized parameter space running along αn ≈ 0.7. This corresponds to a normal stiffness anisotropy ratio of a n = 1, the

condition of no directional dependence in bonds’ normal stiffness. In the Zener ratio > 1 model the directions of curvature

of the C 12 and C 44 isosurfaces are reversed. The parameter that has the weakest impact on the models’ elastic moduli is αs ,

the anisotropy ratio of the shear stiffness, which is perhaps not surprising as the input parameter space was restricted so

that shear stiffness amplitudes were always softer than normal stiffnesses. 

Rather than considering the normalized C 12 and C 44 moduli it is instructive to examine surfaces of constant Zener ratio

and 〈 100 〉 Poisson ratio ν (the ratio of lateral contraction due to an elongation along a 〈 100 〉 direction and defined by

C 12 /( C 11 + C 12 )) as is shown in Fig. 10 . The Poisson ratio is similar in behavior to C 12 in Fig. 9 , being strongly dependent

on a k . The Poisson ratio increases quickly with diminishing shear stiffness when the stiffness ratio is just less than 1, but

the speed of change slows once the shear stiffness is negligible in comparison to the normal stiffness. When the stiffness

ratio is just less than 1 the DEM assemblies exhibit ν close to zero (that is, there is no coupling between deformations

in orthogonal directions), and for shear stiffnesses larger than the normal stiffnesses the DEM assemblies become auxetic.

This unusual behavior can be understood by considering the deformation of an idealized case of four identical elements

connected by parallel bonds at 45 ° to a loading axis (see Fig. 11 ). It is trivial to show that the Poisson ratio of this idealized

element cluster is 

ν = 

−�y 

�x 
= 

k n − k s 

k n + k s 
(35)

Clearly if this simple model were rotated by 45 ° so that the bonds were parallel or perpendicular to the loading the

Poisson contraction of the assembly would be zero, and so with a large random assembly the collective behavior will fall

between these extremes. 

The simple example in Fig. 11 shows that Poisson contraction of the DEM assembly originates from the balance of shear

and normal deformations of the bonds. The contraction does not originate from geometric rotation of bonds acting like net-

work of pinned bars in a complex truss — a good thing as the atomic bonding in a material are not simple pair interactions.

However, the Poisson contraction is still a collective property and does not stem from Poisson contraction of individual el-

ements. Each element represents a chunk of elastic material seamlessly welded to its neighbouring elements, and so each
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Fig. 9. Surfaces of constant elastic moduli plotted in the space of log-normalized model parameters with the x, y , and z axes the normal, shear, and 

stiffness ratios respectively. Blue surfaces (plots (a) and (d)) are contours of C 12 / C 11 ratio. Orange surfaces (plots (b) and (e)) are contours of C 44 / C 11 . The 

top row (plots (a–c)) are for the Zener ratio > 1 model, while the bottom row is for the Zener ratio < 1 model. Plots (c) and (f) show the two moduli 

contours overlaid. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

element should experience a Poisson contraction. This is not captured in standard DEM models which treat elements as rigid

and represent their elastic behavior with independent contact laws. Correctly capturing Poisson coupling in this formalism

would require the equilibrium length of a bond between two elements to alter based on the combined state of all the other

bonds those elements participate in. This is a fundamental limitation of the current parallel bond DEM that we will seek

to remedy in future work, and unfortunately, may require losing the simplicity of independent local contact laws. It is clear

from Figs. 8–10 that the DEM networks simulated in this work have trouble producing a Poisson ratio greater than about

0.3. It was found that this limit could be increased by changing the density of the bonding network to reduce the average

element coordination, but a thorough investigation of this is beyond the scope of this manuscript. 

Also shown in Fig. 10 are surfaces in parameter space with constant Zener ratio. It can be seen that these lie vertically

and so are only weakly coupled to the stiffness ratio, a k . The anisotropy increases as a n or a s move away from 1 ( αn or αs 

move away from 0.703), and dependence on a s fades as a k diminishes. The limit to the elastic anisotropy achievable with

the DEM model can be understood by looking at the plots of the directionally dependent stiffness shown in Fig. 3 (and also

later in Fig. 12 ). As the shear or normal anisotropy parameter becomes large or small the corresponding stiffness distribution

becomes very acute, either composed on needle like lobes or pancake like discs. In these extreme cases, the solid angle

subtended by the directions of high stiffness is very low and, as the elements have an average coordination of eight, the

likelihood of a contact lying exactly along the stiff direction becomes low. This means that although the bond stiffnesses

are highly anisotropic, there are a number of very stiff bonds embedded in a network of much softer bonds and thus one

would expect to require a large MRV. 

Beyond the problem of numerically sampling a stiffness distribution with long tails, a second and more fundamental

limit on the accessible elastic properties is set by the integral of the stiffness functions. In Appendix C , the analytic model

derived in Appendix A is compared with the DEM simulations. Performing a random sampling of the parameter space, as

was performed for DEM in Fig. 8 , produces a very similar accessible domain of elasticity as that shown in Figure A.1. The
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Fig. 10. Surfaces of constant Poisson ratio plotted in the space of log-normalized model parameters with the x, y , and z axes the normal, shear, and 

stiffness ratios respectively. Blue surfaces (plots (a) and (d)) are contours of constant Zener ratio 2 C 44 /( C 11 −C 12 ) ratio. Orange surfaces (plots (b) and (e)) 

are contours of constant 〈 100 〉 Poisson ratio defined as C 12 /( C 11 + C 12 ). The top row (plots (a–c)) are for the Zener ratio > 1 model, while the bottom row is 

for the Zener ratio < 1 model. Plots (c) and (f) show the two moduli contours overlaid. (For interpretation of the references to color in this figure legend, 

the reader is referred to the web version of this article.) 
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analytic model and DEM simulations display elastic anisotropy ranging from 0.6 to 1.5. Where the models differ is in their

ability to cross the red C 12 = C 44 line. 

In Appendix D , the analytic model is used to determine how the limits of the accessible elastic domain are related to

the angular stiffness functions. For expanding this domain to reach more extreme anisotropies, it is shown that larger val-

ues of Z can be achieved if the stiffness functions are altered to permit independent tuning of shear and normal stiffness

along the 〈 110 〉 directions. To test this a set of modified stiffness functions was defined that added or subtracted a stiffness

contribution due to a function defined as the envelope of six spheroids aligned along 〈 110 〉 . For the Z > 1 model these new

stiffness functions were defined with the normal stiffness k n ( n , a n ) = k o ( r < 111 > ( n , a n ) + 0 . 5 r < 110 > ( n , a n ) ) , and shear stiff-

ness k s ( n , a s ) = k o ( r < 100 > ( n , a s ) − 0 . 5 r < 110 > ( n , a s ) ) , where r < 100 > , r < 111 > , and r < 110 > are radial functions describing the

envelope of three, four, and six overlapping spheroids aligned with the principal axes along the < 100 > , < 111 > , and < 110 >

directions, respectively. For the Z < 1 model the stiffness functions were k n ( n , a n ) = k o ( r < 100 > ( n , a n ) + 0 . 5 r < 110 > ( n , a n ) ) , and

k s ( n , a s ) = k o ( r < 111 > ( n , a s ) − 0 . 5 r < 110 > ( n , a s ) ) . The domain of elasticity that can be accessed using these functions is also

plotted in Fig. A.1(a) and is considerably wider in Z that the simpler model, but is still bounded by the C 12 = C 44 line. 

To examine the cause of the C 12 = C 44 boundary, Appendix D also examines the integral that dictates the quantity C 12 −
 44 . This was found to be always negative; there is no modification that could make this positive. That is, a system of

parallel bonds deformed homogeneously cannot have C 12 − C 44 > 0 . This then raises a question: what is different about the

DEM simulations that enables C 12 − C 44 to be positive in some circumstances? In the analytic model, it is seen that C 12 − C 44

becomes identically zero when the shear stiffness goes to zero in agreement with the Cauchy relationship that C 12 = C 44 in

materials held together with center to center pair interactions only. That the DEM simulations are able break through this

we attribute to non-homogeneous displacement of the elements. In the DEM simulations the orientation and stiffness of

bonds is random, and thus the deformation field of the elements will include locally non-affine displacements. The result
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Fig. 11. Idealized 4 element model to illustrate the effect of normal to shear stiffness ratio on the Poisson contraction. 

Fig. 12. Contours of identical elastic behavior. Plot (a) shows contours of C 12 / C 11 = 0.2, and C 44 / C 11 = 0.35 for the Zener ratio < 1 model. Plot (b) shows 

contours of C 12 / C 11 = 0.35, and C 44 / C 11 = 0.35 for the Zener ratio > 1 model. The vertical dashed red line indicates the line along which the bond normal 

and shear stiffnesses are isotropic. The inset polar plots show the shear (gold) and normal (blue) stiffness distributions (all plotted on the same absolute 

scale). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

will be a larger fraction of elastic energy stored in bonds oriented in soft directions and deformation fields that could involve

local rotation of clusters of elements. The authors speculate that these could be responsible for positive values of C 12 − C 44 . 

A more systematic approach to expanding the accessible elastic domain would be through the use of stiffness functions

constructed from a more complete basis set. For example, one could define a stiffness distribution using a correctly sym-

metrized set of spherical harmonics. For more flexibility still, one could define the shear stiffness to depend on the direction

of displacement in addition to the orientation of the bond. The standard parallel bond model used in DEM has only a sin-

gle shear stiffness; that is, for a given contact normal, the shear stiffness is the same in all directions perpendicular to the

contact. This is not the case in a cubically elastic medium where, as can be seen in Fig. 2 , on any contact plane there will

be a soft and stiff direction of shear. 

6.2. Selection of element packing density, coordination, and polydispersity 

The choice of assembly packing fraction, element polydispersity, and coordination number all affect the collective macro-

scopic elastic behavior, but were not fully explored in this work. Rather, a set of reasonable choices for these parameters
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Table 3 

Table quantifying variation in internals state for DEM parameters shown in Fig. 12. (a) which all have the same normalized elastic moduli 

of C 12 / C 11 = 0.2 and C 44 / C 11 = 0.35. The 2nd and 3rd columns show the mean normalized noise in measurement sphere normal and shear 

strains, and the last two columns quantify the deviation from the analytic model derived in Appendix A . 

Model parameters Normalized measurement sphere noise (%) Deviation from analytic model: ( C ij / C 11 ) DEM – ( C ij / C 11 ) Model 

Set a n a s a k ɛ 1 (%) ɛ 4 (%) Deviation: �12 Deviation: �44 

i 1.30 0.03 0.33 5.8 5.0 −0.028 0.017 

ii 1.82 0.12 0.22 5.7 4.8 −0.013 0.003 

iii 2.83 0.88 0.24 6.1 4.3 −0.008 −0.015 

iv 1.78 3.61 0.22 5.4 4.3 −0.014 0.006 

v 0.50 0.03 0.34 5.8 5.1 −0.025 0.014 

vi 0.34 0.12 0.23 5.5 5.0 −0.012 0.006 

vii 0.21 0.88 0.27 5.8 4.5 −0.007 −0.002 

viii 0.38 3.61 0.22 5.4 4.5 −0.005 0.009 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

were found for which the sensitivity of the model to the variation in packing, element size distribution and element coor-

dination was low. 

The packing efficiency is quantified here by the assembly porosity, or void fraction , as is common in the geotechnical

literature for granular materials. A lower limit of an admissible void fraction is 0.36 which corresponds to a closest possible

packing of monodispersed spheres. Smaller void fractions can be obtained in highly polydisperse assemblies, but in this work

the element size distribution was relatively low — only large enough to prevent regular crystal-like packing of elements. An

upper limit of void fraction occurs at around 0.44 with the jamming transition in a non-bonded assembly, above which the

assemblies become so loose that they are mechanically unstable. Although the elements in the assemblies in this work are

bonded, the bonding network with a high void fraction would be very loose and thus a poor representation of an elastic

continuum. The interaction cutoff for bonding adjacent elements was tuned so that the average element coordination was

8.0. In general, a higher coordination number may give macroscopic response closer to continuum behavior; however, more

redundant bonding in an assembly inhibits Poisson contraction and so a compromise was needed reach higher Poisson ratios

and C 12 values relative to C 11 and C 44 . 

6.3. Choosing optimal model parameters 

The most surprising result from Fig. 10 is that it does not matter how one chooses to introduce anisotropy into the

directional dependence of the bond stiffnesses. One can create a DEM model with the same macroscopic Zener anisotropy

ratio using stiffness distributions defined by either oblate ( a < 1) or prolate ( a > 1) spheroids, providing one imposes the

correct cubic symmetry of these distributions. 1 The concept is particularly noticeable in Fig. 12 which shows the locus of

parameters that all yield a particular elasticity tensor, along with spherical plots of the stiffness distributions that produced

them. The contours show a remarkable mirror symmetry in the a s = 1 plane ( αs = 0.703 plane). For both the Zener ratio

< 1 and > 1 models the angular functions for normal stiffness that produce the left-hand contour are built from prolate

spheroids. These distributions resemble the angularly dependent normal stiffness in Fig. 2 , while the right-hand contour is

constructed using oblate distributions of normal stiffness that appear to have little in common with the moduli in Fig. 2 . 

At this point, some questions arise. Which of the many choices of parameters for a desired elastic response should

one choose? and should one discriminate between the choices? and should one switch from angular functions based on

spheroids to a basis set that provides more flexibility such as spherical harmonics? 

Sticking with spheroid angular functions, a number of arguments can be made to steer the choice of model parameters.

One approach is to choose parameters that reflect the underlying behavior of the material of interest. With this rationale,

one might choose parameters in which the same anisotropy ratio is used for shear stiffnesses as for normal stiffness —

restricting oneself to parameters on the diagonal a n = a s plane as plotted in Fig. 13 . On this equianisotropy plane one still

has to decide whether to use oblate ( a < 1) or prolate ( a > 1) distributions. Keeping with the philosophy of mimicking the

bonding behavior of the material the best choice might be to use parameters with a > 1. 

An alternative approach to choosing between model parameters that produce equivalent macroscopic elastic response is

to ask what is different about the system at the microscopic level, and to choose the system with the least microscopic

heterogeneity, and thus, the smallest MRV. With this rationale, one would choose the parameters for a n and a s closest to

one – and when faced with the choice of prolate or oblate distributions, opting for oblate distributions would be preferable

as these have a more equitable distribution of stiffness over a given solid angle. To quantify heterogeneity, we compute the

mean normalized standard deviation of the distribution of local strains obtained from the set of measurement spheres. This

noise metric for the eight sets of model parameters (labeled i–viii) along the contour in Fig. 12 (a) are given in Table 3 . For

this system which, is not strongly anisotropic, the distribution of local strains is narrow with a width of around 5–6%, for
1 The authors speculate that this hints at a profound hidden symmetry in the way macroscopic elasticity emerges from collective microscopic interac- 

tions, but at this juncture the authors are uncertain of what this might be. 
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Fig. 13. Contours of elastic moduli on the plane of the parameter space on which the normal and shear stiffnesses have identical anisotropy ratio ( αn = αs ). 

The red dashed line marks the parameters at which the normal and shear stiffnesses are isotropic ( a n = a s = 1). Plots (a & b) are for the Zener ratio > 1 

model and (c & d) are for Zener ratio < 1. Plots (a & c) show the normalized moduli C 12 /C 11 (blue) and C 44 / C 11 (gold). Plots (b & d) show the Zener ratio 

(blue) and Poisson ratio (gold). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

both the normal and shear components of strain. There is no obvious trend in this heterogeneity with the model parameters,

other than that the noise in the normal strain is slightly larger than the noise in the shear strain. 

An alternative means to quantify this internal state of the DEM assembly can be made indirectly by comparing the

elastic moduli of the DEM element assembly to the moduli of the analytic model with the same stiffness functions. This

comparison was also performed for parameter sets indicated in Fig. 12 (a) with the results reported in Table 3 . In these

cases the mean field analytic model and the DEM simulations are in good agreement and there is no overall trend in the

deviation. The comparison was also performed over the entire log normalized parameter domain for the Z > 1 model as

shown in Fig. C.1 (b) in Appendix C . Here the assumption is that differences between the mean field analytic model and the

DEM model arise because of heterogeneous deformation and therefore, the deviation in moduli between the two is a metric

of the heterogeneity in the DEM assembly. In Fig. C.1 (b) it can be seen that the deviation from mean field behavior depends

most strongly on the ratio of the shear to normal stiffness, and that C 12 matches the mean field model when the normal

and shear stiffnesses have similar magnitudes, while C 44 matches the mean field model when the shear stiffness is low. 

As a final comment, the rationale for selecting the parameters for spheroid based models can be applied to choosing

other angular functions and selecting the model parameters for these alternative functions. The advantage to be gained
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from selecting more flexible angular functions, besides reducing the MRV, is expanding the boundaries of accessible elastic

behavior. 

7. Conclusions 

In this work, the discrete element method (DEM) was adapted to enable a random packing of elements to model materi-

als with cubic anisotropy. The ability to capture cubic elasticity is a prerequisite for extending the discrete element method

to model stochastic mechanical processes in monolithic solids which consist of cubically anisotropic elastic constituents

(polycrystals, composites, etc.). Additionally, the DEM model presented here provides a roadmap for adapting traditional

DEM to model orthotropic rocks and geotechnical materials. This extension to DEM was accomplished using the established

parallel bond contact formalism and is capable of modeling a broad range of cubic materials with Zener ratios smaller and

larger than one. Anisotropy in the collective elastic response of the DEM assembly comes from assigning the stiffness of

element to element bonds depending on the bonds’ initial orientation — and crucially, assigning them using an angular de-

pendence function that has the same underlying cubic symmetry as the crystal it mimics. In this first demonstrative work,

these angular functions where defined by the envelope of three or four overlaid spheroids with principal axes aligned,

respectively, along the 〈 100 〉 or 〈 111 〉 directions of the crystal being represented. The models have three parameters that

define the overall elastic behavior ( a n , a s , and a k , respectively, the normal and shear stiffness anisotropy, and the ratio of

the shear to normal stiffness magnitude). A fourth parameter sets the overall magnitude of the resulting stiffness tensor.

Two different models were presented to capture the properties of materials with Zener ratio < 1 and Zener ratio > 1. It was

demonstrated that the models’ elastic behaviors have the correct symmetry and rotational invariance. 

The research presented here also explored the mapping between the model parameters and the resulting elastic prop-

erties, and examined the limits on the domain of elastic properties that can be accessed with the DEM model. An artificial

neural network (ANN) was trained to interpolate between input DEM model parameters and the ensuing elastic moduli of

the DEM assembly. The interpolation scheme enabled connections between the model parameters and resulting behavior

to be elucidated efficiently and revealed the surprising result that only the scale of the asymmetry aspect ratio in the con-

tact mechanics is important, not its direction of deviation. The ANN analysis further revealed that the input parameters are

non-unique and thus a desired set of elastic stiffness tensor ratios can be achieved with numerous combinations of input

parameters. Accompanying the DEM model, an analytic mean field model of the DEM elasticity was presented and used

to examine the limit on the accessible domain of elastic properties. This model reveals that the accessible domain can be

expanded to larger and smaller Zener anisotropy ratios by changing the functional form of the angular stiffness functions,

but that there is a hard limit to increasing the Poisson ratio that is set by the Cauchy C 12 = C 44 limit. The combination of

the ANN and the mean field model can be used to quickly and efficiently choose an optimal set of DEM model parameters

to represent a system with a specific desired stiffness tensor. 
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Appendix A. Analytic model of elasticity 

Consider a DEM assembly that contains N b parallel bonds per unit length, uniformly distributed over orientation, and

with an average length l . The bonds have normal and shear stiffness that depend on orientation, k n ( ̂  n ) , and k s ( ̂  n ) respec-

tively. If the assembly is deformed with a homogeneous strain ɛ (and one assumes that deformation of the bonds is affine)

then the displacement of a bond with orientation ˆ n is given by: 

u = l 
(

ˆ n · ε 
)
. (A.1)

Where the displacement can be separated into normal and shear components: 

u n = u · ˆ n = l 
(

ˆ n · ε 
)

· ˆ n , (A.2)

and 

u s = | u − u n ̂  n | = l 

√ (
ˆ n · ε 

)
·
(

ˆ n · ε 
)

− ˆ n 

((
ˆ n · ε 

)
· ˆ n 

)
. (A.3)

The elastic energy stored in the deformed bond is: 

E b 
(

ˆ n 

)
= 

1 

2 

k n 
(

ˆ n 

)
u 

2 
n + 

1 

2 

k s 
(

ˆ n 

)
u 

2 
s 

= 

1 

2 

l 2 
(
k n 

(
ˆ n 

)
− k s 

(
ˆ n 

))((
ˆ n · ε 

)
· ˆ n 

)2 + 

1 

2 

l 2 k s 
(

ˆ n 

)(
ˆ n · ε 

)
·
(

ˆ n · ε 
)
. (A.4)

Averaging over all orientations gives the total elastic energy density: 

E v = 

N b 

4 π

∫ 
d ̂  n E b 

(
ˆ n 

)
. (A.5)



382 A. Truszkowska et al. / Journal of the Mechanics and Physics of Solids 121 (2018) 363–386 

 

 

 

 

 

 

 

 

 

The elements of the elastic stiffness tensor C ijkl are given by the second derivative of the elastic energy density so that:

C ijkl = d ijkl 

∂ 2 E v 
∂ ε ij ∂ ε kl 

, (A.6) 

where d ijkl is the multiplicity of the symmetry equivalent index combinations (so that for example d 1111 = 1 , d 1122 = 2 ,

d 1112 = 4 , d 2323 = 4 , and d 2313 = 8 ). 

Switching to the notation of the reduced stiffness matrix, we can compute the stiffness element C ij by imposing a ho-

mogeneous strain state ε = ηi ε 
(i ) + η j ε 

( j) : the sum of two superimposed strains with magnitudes ηi and ηj along strain

directions ɛ ( i ) and ɛ ( j ) . The energy density of the assembly with this deformation is: 

E v = 

N b l 
2 

8 π

∫ 
d ̂  n 

[ 
( k n − k s ) 

(
ˆ n · ε · ˆ n 

)2 + k s 
(

ˆ n · ε 
)

·
(

ˆ n · ε 
)] 

= 

N b l 
2 

8 π

∫ 
d ̂  n 

[ 

( k n − k s ) 

(
η2 

i 

(
ˆ n · ε ( i ) · ˆ n 

)2 + 2 ηi η j 

(
ˆ n · ε ( i ) · ˆ n 

)(
ˆ n · ε ( j ) · ˆ n 

)
+ η2 

j 

(
ˆ n · ε ( j ) · ˆ n 

)2 
)

+ k s 
(
η2 

i 

(
ˆ n · ε ( i ) 

)
·
(

ˆ n · ε ( i ) 
)

+ 2 ηi η j 

(
ˆ n · ε ( i ) 

)
·
(

ˆ n · ε ( j ) 
)

+ η2 
j 

(
ˆ n · ε ( j ) 

)
·
(

ˆ n · ε ( j ) 
))

] 

. (A.7) 

Taking the second derivatives with respect to η gives: 

C ii = d ii 
∂ 2 E v 
∂η2 

i 

= 

N b l 
2 

8 π

∫ 
d ̂  n 

[ 
( k n − k s ) 

(
ˆ n · ε ( i ) · ˆ n 

)2 + k s 
(

ˆ n · ε ( i ) 
)

·
(

ˆ n · ε ( i ) 
)] 

, (A.8) 

C ij = d ij 
∂ 2 E v 

∂ ηi ∂ η j 

= 

N b l 
2 

8 π

∫ 
d ̂  n 

[
( k n − k s ) 2 

(
ˆ n · ε ( i ) · ˆ n 

)(
ˆ n · ε ( j ) · ˆ n 

)
+ k s 2 

(
ˆ n · ε ( i ) 

)
·
(

ˆ n · ε ( j ) 
)]

. (A.9) 

Appendix B. Proof of cubic elasticity from spheroid stiffness distributions 

Cubic elasticity requires that C 11 = C 22 = C 33 	 = 0 , C 12 = C 21 = C 13 = C 31 = C 23 = C 32 	 = 0 , C 44 = C 55 = C 66 	 = 0 , all other ele-

ments are identically zero, and that 2 C 44 	 = C 11 − C 12 . Each case will be considered separately, first showing that C 11 , C 12 , and

C 44 are non-zero and independent and then showing that C 14 and C 45 are identically zero. Finally, it will be shown that

the symmetry of the stiffness functions k n and k s leads to equivalence between the symmetry related elastic constants in a

cubic systems. 

Demonstration that C 11 is n on-zero 

Considering strain path: 

ε 1 = 

⎡ 

⎣ 

1 0 0 

0 0 0 

0 0 0 

⎤ 

⎦ , (B.1) 

and direction ˆ n parameterized by polar angle, θ , and azimuthal angle, φ, the elastic constant C 11 can be written as the

integral: 

C 11 = 

N b l 
2 

4 π

∫ 
d θ sin ( θ ) 

∫ 
d φ

[
( k n ( θ, φ) − k s ( θ, φ) ) cos 4 ( φ) sin 

4 
( θ ) 

+ k s ( θ, φ) cos 2 ( φ) sin 

2 
( θ ) 

]
	 = 0 . (B.2) 

Demonstration that C 12 is n on-zero 

Considering the additional strain path: 

ε 2 = 

[ 

0 0 0 

0 1 0 

0 0 0 

] 

, (B.3) 

one obtains: 

C 12 = 

N b l 
2 

4 π

∫ 
d θ sin ( θ ) 

∫ 
d φ

[
( k n − k s ) sin 

2 
( φ) cos 2 ( φ) sin 

4 
( θ ) 

]
	 = 0 , (B.4) 

where the angularly dependent stiffness functions have been written simply as k n and k s for the sake of brevity. 

Demonstration that C 44 is n on-zero 

Using the strain path: 

ε 4 = 

[ 

0 0 0 

0 0 1 

0 1 0 

] 

, (B.5) 
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one obtains: 

C 44 = 

N b l 
2 

16 π

∫ 
d θ sin ( θ ) 

∫ 
d φ

[
( k n − k s ) 4 sin 

2 
( φ) sin 

2 
( θ ) cos 2 ( θ ) 

+ k s 
(
sin 

2 
( φ) sin 

2 
( θ ) + cos 2 ( θ ) 

)] 	 = 0 . (B.6)

Demonstration that C 14 is identically zero 

Mixing the normal and shear deformation using the strain paths one obtains: 

C 14 = 

N b l 
2 

4 π

∫ 
d θ sin ( θ ) 

∫ 
d φ

[
( k n − k s ) 4 sin ( φ) cos 2 ( φ) sin 

3 
( θ ) cos ( θ ) 

]
= 0 . (B.7)

The stiffness functions k n and k s are constructed to possess cubic symmetry (triad axes along 〈 111 〉 ) and so also posses

mirror symmetry on the φ = 0 plane. The term sin ( φ)cos 2 ( φ) is antisymmetric in φ and so the expression integrates iden-

tically to zero. 

Demonstration that C 45 is identically zero 

Mixing shear deformations along different directions using the strain path: 

ε 5 = 

[ 

0 0 1 

0 0 0 

1 0 0 

] 

= 

1 

2 

γ5 , (B.8)

one obtains: 

C 45 = 

N b l 
2 

8 π

∫ 
d θ sin ( θ ) 

∫ 
d φ

[
( k n − k s ) sin ( 2 φ) sin 

2 
( φ) cos 2 ( θ ) 

+ k s sin ( 2 φ) sin 

2 
( θ ) 

]
= 0 . (B.9)

In this expression, sin (2 φ) is antisymmetric in φ and, as with C 14 , the expression integrates identically to zero. 

Demonstration that C 11 , C 12 , and C 44 are independently tunable 

For non-isotropic elasticity one requires that 2 C 44 	 = C 11 − C 12 . Using the equations above: 

C 11 − C 12 = 

N b l 
2 

4 π

∫ 
d θ sin ( θ ) 

∫ 
d φ

[
( k n − k s ) cos 2 ( φ) cos ( 2 φ) sin 

4 
( θ ) 

+ k s cos 2 ( φ) sin 

2 
( θ ) 

]
	 = 2 C 44 . (B.10)

It can hence be seen by comparison of this with the equation for that C 11 , C 12 , and C 44 must be independent. 

Symmetry relationships between stiffness elements 

The final task is to show that if k n and k s posses cubic symmetry, then the elastic constants also satisfy the cubic sym-

metry relations so that, for example, C 11 = C 22 = C 33 . By possessing cubic symmetry, the stiffness function is invariant under

a three-fold rotation about [111] so that: 

k 
(

ˆ n 

)
= k 

(
ˆ n · L 

)
, (B.11)

where: 

L = L 3 [ 111 ] = 

[ 

0 0 1 

1 0 0 

0 1 0 

] 

, (B.12)

is the transformation matrix for a three-fold rotation about [111] axis. Consider imposed normal strain along ˆ y : 

ε 2 = 

[ 

0 0 0 

0 1 0 

0 0 0 

] 

= L · ε 1 · L −1 , (B.13)

so that C 22 is given by: 

C 22 = 

N b l 
2 

8 π

∫ 
d ̂  n 

[ 
( k n − k s ) 

(
ˆ n · ε 2 · ˆ n 

)2 + k s 
(

ˆ n · ε 2 
)

·
(

ˆ n · ε 2 
)] 

. (B.14)

Using the symmetry relationship, we can write this in terms ɛ 1 , a normal strain path along ˆ x : 

C 22 = 

N b l 
2 

8 π

∫ 
d ̂  n 

[
( k n − k s ) 

(
ˆ n ·

(
L · ε 1 · L −1 

)
· ˆ n 

)2 

+ k s 
(

ˆ n ·
(
L · ε 1 · L −1 

))
·
(

ˆ n ·
(
L · ε 1 · L −1 

))]. (B.15)

Rearranging the order of these matrix products and substituting for ˆ n ′ = ˆ n · L gives: 

C 22 = 

N b l 
2 

8 π

∫ 
d ̂  n 

[ 
( k n − k s ) 

(
ˆ n 

′ · ε 1 · ˆ n 

′ )2 + k s 
(

ˆ n 

′ · ε 1 
)

·
(

ˆ n 

′ · ε 1 
)] 

, (B.16)
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Fig. C.1. (a) Domain of elasticity space accessible by spheroid based stiffness interactions demarked by plotting the elasticity from 10,0 0 0 randomly sam- 

pled points in the input parameter space. The blue and gold data is for the model using stiffness functions used in the DEM model, and it can be seen 

that the accessible domain is similar to the at in Fig. 8 for the DEM model. The purple and orange data is generated using stiffness functions as before but 

with the addition of correction terms from the addition of spheroids aligned along the < 110 > directions. (b) Deviation between the analytic model and 

DEM simulations plotted at 500 randomly sampled points of the log normalized input parameter space. Red is zero deviation. (For interpretation of the 

references to color in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

and as k n ( ̂  n ) = k n ( ̂  n · L ) = k n ( ̂  n ′ ) and k s ( ̂  n ) = k s ( ̂  n · L ) = k s ( ̂  n ′ ) , and the integral is performed over the full solid angle we see

that: 

C 22 = 

N b l 
2 

8 π

∫ 
d ̂  n 

[ (
k n 

(
ˆ n 

′ ) − k s 
(

ˆ n 

′ ))( ˆ n 

′ · ε 1 · ˆ n 

′ )2 + k s 
(

ˆ n 

′ )( ˆ n 

′ · ε 1 
)

·
(

ˆ n 

′ · ε 1 
)] 

, 

C 22 = C 11 . (B.17) 

A similar approach can be used to prove the equivalence of the other symmetry related stiffness elements; however, this

is left as an exercise for the reader. 

Appendix C. Comparison of analytic model with DEM model 

As with the DEM simulation, a simple method for identifying the accessible elastic domain using the analytical model

is to randomly sample the parameter space and plot the resulting cloud of elastic properties. The results are shown in

Fig. C.1 (a). It can be seen that the domain is remarkably similar to that which is accessible by the DEM model presented in

Fig. 8 . Also shown in Fig. C.1 (b) is the deviation between the analytic model and the DEM model in both C 12 / C 11 and C 44 / C 11 

for the case where Z > 1. It can be seen that deviation of the models is lowest in C 12 / C 11 for high αk and the reverse for

C 44 / C 11 . It we assume that the deviation between the analytic and DEM models is due to the non-affine internal deformation

in the DEM model, then we can see that an optimal choice of model parameters is to choose anisotropy factors a n and a s 
as close to 1 as possible, and choosing a k to minimize the non-affine deformation of the assembly. 

Appendix D. Insights for expanding the accessible domain of elasticity 

The accessible domain of elasticity space is enclosed in one direction by a line of constant Zener ratio and in the other

by the Cauchy relationship C 12 = C 44 . The boundaries of accessible space of the DEM model are parallel to those of the

analytic model, but while both models can achieve similar levels of elastic anisotropy, the DEM model can access a region

considerably to the right of the C 12 = C 44 boundary of the analytic model. That is, the analytic model cannot produce values

of C 12 − C 44 > 0 . To examine how the angular distributions of bond stiffness could be revised to push past the boundaries in

Z and C 12 − C 44 , we can examine the integral equations that give rise to these quantities. The Zener ratio is given by: 

Z = 

2 ̃

 C 44 

1 − ˜ C 12 

= 

∫ 
d ̂  n ( χn k n + χs k s ) ∫ 
d ̂  n ( γn k n + γs k s ) 

, (D.1) 

where the tilde denotes the dimensionless elastic stiffness element normalized by C 11 and the functions χ and γ are 

χn = sin 

2 
( 2 θ ) sin 

2 
( φ) , 

χs = cos 2 ( θ ) − sin 

2 
( θ ) ( 2 cos ( 2 θ ) + 1 ) sin 

2 
( φ) , 

γn = 2 sin 

4 
( θ ) cos 2 ( φ) cos ( 2 φ) , 

γs = −2 sin 

2 
( θ ) cos 2 ( φ) 

(
sin 

2 
( θ ) cos ( 2 φ) − 1 

)
. (D.2) 
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Fig. D.1. The overlap kernels for the integrals for F and ˜ C 12 − ˜ C 44 for the Z model. Bond stiffness functions are plotted as a translucent green surface. For 

the other function positive values are plotted in gold, and negative values in blue. The left-hand column is for the integral of the normal stiffness, and the 

right column for the shear stiffness. The top row is for the kernels in the integrals of the numerator of Z , the middle row for the terms in it denominator. 

Expanding the boundary of the accessible domain in Z requires maximizing the top row and minimizing the middle row. The bottom row shows the kernels 

of the integrals in ˜ C 12 − ˜ C 44 . The integral over k n is identically zero by symmetry, and as function weighting the integral over k s is everywhere negative 
˜ C 12 − ˜ C 44 ≤ 0 . Furthermore, there is no change to the stiffness function s that can be made, consistent with cubic symmetry, that will ever make ˜ C 12 − ˜ C 44 

positive. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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If we consider just the case for the Z > 0 model in which k n peaked along 〈 111 〉 and k s along 〈 100 〉 , then to push the

boundaries in Z , we wish to maximize the numerator of Z while minimizing its denominator. That is we wish to maximize

the overlap of χ and k in the numerator, and minimize overlap of γ and k in the denominator. The functions χ and γ are

plotted overlain with their respective stiffness functions in Fig. D.1 . From these figures it is clear that Z could be increased

if k n was altered so that bonds were stiffer for normal displacements along the 〈 110 〉 directions, and that k s was varied to

make bond softer in shear along 〈 110 〉 . With the spheroid-based forms of k n and k s , it is not possible to independently tune

the stiffness of the 〈 110 〉 directions, and thus the model predicts that the best next iteration of a stiffness function would

include the flexibility to tune the stiffness in these directions as well. In the complementary direction the distance from the

 12 = C 44 boundary is given by: 

C 12 − C 44 = 

∫ 
d ̂  n ( ζn k n + ζs k s ) , (D.3)

where: 

ζn = 2 sin 

2 
( θ ) sin 

2 
( φ) 

(
sin 

2 
( θ ) cos 2 ( φ) − cos 2 ( θ ) 

)
, 

ζs = 

1 

2 

(
sin 

4 
( θ ) 

(
−sin 

2 
( 2 φ) 

)
+ sin 

2 
( θ ) ( 2 cos ( 2 θ ) + 1 ) sin 

2 
( φ) − cos 2 ( θ ) 

)
. (D.4)

These are also plotted in Fig. D.1 . The function ζ n has maxima along the 〈 110 〉 directions, but is antisymmetric, and so

the overlap with k n integrates to zero. The term ζ s is negative for all directions, and so the integral of its overlap with k s is

also negative. This means that not only is ˜ C 12 − ˜ C 44 always less than or equal to zero, there is no change that can be made

to the stiffness functions that will make ˜ C − ˜ C > 0 while still possessing cubic symmetry in k n and k s . This makes it all
12 44 
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the more remarkable that the DEM model is able to obtain values of ˜ C 12 − ˜ C 44 in excess of 0.1. We attribute this to a not

overly redundant bond network permitting non-affine deformation of the assembly. 
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