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ABSTRACT 
 

Failure of metallic materials due to plastic and/or creep deformation occur by the emergence 
of necking, microvoids, and cracks at heterogeneities in the material microstructure. While many 
traditional deformation modeling approaches have difficulty capturing these emergent 
phenomena, the discrete element method (DEM) has proven effective for the simulation of 
materials whose properties and response vary over multiple spatial scales, e.g., bulk granular 
materials. The DEM framework inherently provides a mesoscale simulation approach that can be 
used to model macroscopic response of a microscopically diverse system. DEM naturally 
captures the heterogeneity and geometric frustration inherent to deformation processes. While 
DEM has recently been adapted successfully for modeling the fracture of brittle solids, to date it 
has not been used for simulating metal deformation. In this paper, we present our progress in 
reformulating DEM to model the key elastic and plastic deformation characteristics of FCC 
polycrystals to create an entirely new crystal plasticity modeling methodology well-suited for the 
incorporation of heterogeneities and simulation of emergent phenomena. 
 
INTRODUCTION 
 

Improving the accuracy and predictive power of solid deformation models will require 
inclusion of the underlying micromechanical phenomena of deformation and failure. Such 
micromechanistic models could help address outstanding issues in the mechanics of materials, 
such as estimating a material’s lifespan [1]. The discrete element method (DEM), originally 
developed for granular mechanics [2], has potential to provide a robust framework for such 
models. DEM is inherently heterogeneous in structure and local properties and the simulated 
elements are distinct entities. Like other discrete methods [3], DEM can readily model the 
emergence of discontinuities, such as cracks, in a material, which can be challenging for 
continuum methods, requiring increased complexity and computational cost [4]. Finally, the 
DEM formulation is similar to molecular dynamics, thus creating possibilities for straightforward 
implementation of atomistic findings in a macroscale deformation model. In this regard, DEM 
can serve as a mesoscale modeling method between atomistic and macroscopic whereby each 
element represents a domain of material consisting of many atoms while maintaining varying 
levels of local and micromechanical heterogeneity. 

To date, DEM has been successful in modeling various plasticity and damage-related 
phenomena in granular materials such as soil and rock, including deformation [5], fracture [6], 
and creep [7]. The method was also adapted to model brittle, amorphous continuum materials 
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such as ceramics [8] and composites [9]. This work presents progress on modifying DEM to 
model continuum, elastic-plastic deforming materials. In this paper, recent advances are 
summarized including modeling anisotropic cubic crystal elasticity and isotropic plasticity, the 
latter both with and without strain hardening. The long-term goal of this effort is to develop a 
new type of crystal plasticity model for metals and alloys that correctly captures the emergence 
of deformation and failure mechanisms such as shear bands, voids, cracks, etc. 

THEORY 

Deformation in the discrete element method 
 

The discrete element method was first developed by Cundall [2]. The model consists of 
three dimensional spherical elements bonded by spring-like bonds (Figure 1a-b). Elements are 
randomly packed into an assembly of a desired shape and they can be fused into continuous solid 
by forming a network of bonds between neighboring elements. 

 

At each time step, a DEM simulation proceeds by computing new positions and rotational 
displacements of elements from their effective forces and moments. These in turn originate from 
pairwise interactions between bonded elements that impart normal and tangential (shear) forces 
acting on the element center, along with moments transmitted by tilting and twisting of bonds 
(Figure 1c). In the present work, deformation was carried solely by the bonds as element 
stiffnesses were set to zero to ensure the same response of the assembly in tension and 
compression.  A fictitious viscous damping force is also applied to elements to damp out internal 
vibrations and keep element motion quasistatic. 

Elastic deformation of the assembly may occur by stretching, twisting, tilting, and shearing 
of interelement bonds. Bonds can elastically change shape due to normal or shear forces, 
resulting in any combination of the four basic deformation modes shown in Figure 1c. In 
addition to the four modes of elastic deformation, bonds can be allowed to break when either 
its shear or normal stress exceeds a maximum critical value. In our simulations, a broken 
bond is permitted to reform up to a user-defined maximum displacement to give permanent 
bond failure. After the maximum allowed element separation is achieved, the bond remains 
broken creating damage as a crack or void. We treat this value as a calibration parameter, 
although it does have physical meaning and is related to the extent of allowable plasticity. 
Simulations were performed using the software PFC3D v5.0 (Itasca Consulting Group, Inc., 
Minneapolis, MN, USA). 
 

Figure 1. DEM components: (a) 
DEM assembly of spherical 
elements, (b) interelement bond 
represented as a normal and shear 
spring with each corresponding to 
the two bond force components, 
Fn and Fs respectively, (c) four 
basic motions of two bonded 
elements relative to each other. 

https:/www.cambridge.org/core/terms. https://doi.org/10.1557/adv.2017.430
Downloaded from https:/www.cambridge.org/core. Access paid by the UC Riverside Libraries, on 30 Jun 2017 at 20:52:41, subject to the Cambridge Core terms of use, available at

https:/www.cambridge.org/core/terms
https://doi.org/10.1557/adv.2017.430
https:/www.cambridge.org/core


Anisotropic elasticity of cubic materials 
 

Anisotropic cubic elasticity was introduced into DEM by defining angularly dependent bond 
normal and shear stiffness parameters. The relations for angular dependency were constructed 
based on spheroid distributions while maintaining cubic symmetry and ensuring rotational 
invariance of the resultant stiffness tensor. The distribution was a simplification of the normal 
and shear stiffness distributions typical of cubic materials (Figure 2). Cubic materials with Zener 
ratio (Z) lower than 1 have higher normal stiffness along the <100> direction than the <111> 
direction, while the opposite holds for materials with Z > 1. To mimic this behavior, two 
spheroid distributions were developed, one with three spheroids aligned along <100> and one 
with four aligned along <111> (Figure 3). The model simplified the shear stiffness in cubic 
materials by using only one effective shear direction.  

A single cubic material model used two different spheroid stiffness distributions, one for 
normal and one for shear. This resulted in three unknown parameters that could be fitted to 
reproduce elastic response of a given cubic material. Elastic response was evaluated based on the 
stiffness tensor resulting from shear and compressive deformation of a DEM assembly. 
 

 
Figure 2. Normal and shear stiffnesses of cubic materials. In each plot the left most subplot is 
the directionally dependent normal stiffness, the middle two subplots are the shear stiffnesses 
along the soft and stiff shear directions, and the right most subplot the overlaid shear stiffnesses. 

 
Figure 3. Three (a) and four (b) spheroid distributions – mathematical formulation and example 
of angular dependence. ai and aj are material-dependent parameters that govern the spheroid 
shape, while kl is the third parameter that determines the magnitude of resulting stiffnesses. 

Isotropic non-hardening plasticity 
 

Isotropic non-hardening plastic deformation under tension is a property of some amorphous 
materials, such as metallic glasses [10, 11]. To model this behavior with DEM, bonds were 
reformed with no accompanying change in their tensile and shear strength. The assembly shape 
resembles an actual tensile testing specimen to avoid stress concentrations near the grips (Figure 
4a). The deformation was quasi-static and driven by application of fixed axial velocities to 
elements on the top and bottom of the specimen. 
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In addition to reporting stress-strain response, two techniques were developed to assess 
deformation localization in the assembly:  (the L2 norm of the difference between expected 
continuum deformation of each point and the simulated DEM deformation) and local cage 
deformation (the deformation of an imaginary “cage” built around each element, with nodes 
representing element neighbors (Figure 4a)). The former measures non-affine deformation while 
the latter provides a method to visualize strain localization into shear bands. 
 

 
 
Isotropic plasticity with hardening 
 

A DEM model of plasticity with hardening was created by increasing the strength of a bond 
each time it is broken and reformed. For the hardening simulations, the bonds were allowed only 
to break in shear to simulate plastic slip. Three different schemes of hardening were used: (i) 
hardening only the reformed bond by 1.6% or 3%; (ii) hardening the reformed bond plus nearest 
neighboring bonds by 0.2%; (iii) hardening bonds in the vicinity of the reformed bond according 
to an exponential hardening distribution that decays from 1.6% with attenuation length alpha 
ranging from  = 2 – 20, as shown in Figure 4 (c) . To verify the influence of these hardening 
schemes on the model, two assemblies were used – one regular sized assembly shown in Figure 
4a and a smaller cylindrical assembly shown in Figure 4b. Both assemblies produced similar 
average stress-strain responses, but the latter had much shorter simulation times. 
 
RESULTS AND DISCUSSION  
Anisotropic elasticity of cubic materials 
 

The anisotropic elastic DEM model was used to determine how the spheroid bond stiffness 
parameters affected the cubic stiffness tensor (Figure 5). The assembly (Figure 5b) was 
elastically deformed in the  and  strain directions. Figure 5a shows the domain of elastic 
constants that the model can access in comparison to some real cubic materials [12]. The model 
captures the behavior of numerous cubic materials but it is also clearly limited. Accessibility of 
the entire space of anisotropic elastic constants for cubic metals and ceramics is a topic of 
ongoing work. 

 
Isotropic non-hardening plasticity 
 
The stress-strain responses of the non-hardening simulations are shown in Figure 6a. Three 
different cases were tested: (1) bonds are much stronger in shear than in tension; (2) bonds 

Figure 4. (a) Assembly for 
tensile testing simulation; (b) 
Small assembly for probing 
the exponential decay 
hardening scheme; (c) 
Exponential decay hardening 
scheme – plot shows the range 
of hardening under different 
decay parameters and an 
example hardening 
distribution in the assembly. 
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strengths are similar in shear and in tension; and (3) bonds are much weaker in shear than in 
tension. The stress-strain responses had limited plastic elongation, typical of non-hardening 
ductile materials in tension (e.g., metallic glasses [10]). Case 3, which promoted shear plasticity, 
reached the highest plastic strains before fracture. Figure 6b shows results of the  analysis 
which emphasizes the non-affine deformation in the assembly that is characteristic of amorphous 
materials like metallic glasses. The local cage deformation results shown in Figure 6c indicate 

formation of shear bands with increased shear deformation of bonds and suggest an interplay 
between two deformation mechanisms – formation of voids with bonds breaking in tension (Case 
1) and shear banding when bonds deform in shear (Case 3). 
 
Isotropic plasticity with hardening 
 

The results of applying different hardening schemes in DEM are shown in Figure 7, and 
compared to the plastic deformation (up to 10% strain) of Nimonic 75 monotonically loaded in 
tension at the temperature of 600°C. Although all hardening schemes agree well with the 
experiments initially, none of the models reached a strain larger than 8%. Overall, the model 
seems relatively insensitive to how hardening is implemented. Ductility is limited by the 
threshold for bond breakage and because the bond network is not “rewired” as the deformation 

Figure 5. (a) Elastic 
behavior in the DEM model 
(open circles) compared 
with cubic materials (red 
dots). Below the black line 
(blue circles) is Z < 1 and 
above (gold circles) Z > 1, 
(b) Displacement field in an 
assembly subjected to 
strains  and . 

Figure 6. (a) Stress-strain curves for Case 1 (bonds break in tension), Case 2 (bond breakage 
distributed nearly equally), and Case 3 (bonds break in shear); (b) Results of the  
analysis in assembly cross-section; (c) Results of local cage deformation analysis. 
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continues (i.e., few new bonds are formed during shear). Work to address these issues and 
achieve higher ductility is ongoing. 

CONCLUSIONS 

This paper proposes the discrete element method as a new paradigm for enabling the 
mesoscale modeling of emergent damage phenomena in continuum materials. One model 
demonstrated the ability to capture the anisotropic elastic response of a number of cubic 
materials. An isotropic plasticity model reproduces emergent shear bands characteristic for non-
hardening amorphous alloys. The model of isotropic plasticity with hardening agrees well with 
experimental data for a nickel alloy at small strains, but predicts failure at smaller deformations 
than those observed in physical experiments. Limitations of all three models suggest a need for 
more complex and potentially non-pairwise interactions between the DEM elements. 
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Figure 7. Stress-strain responses in DEM simulations with various hardening schemes: large 
assembly and local, nearest, and next-nearest neighbor hardening scheme (left); small 
assembly with exponential decay hardening distribution, smaller values of  correspond to 
more bonds being hardened (right). 
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