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An atomistic level understanding of how varying types and numbers of irradiation induced defects affect
thermal resistance in graphite is vital in designing accident tolerant fuels for next-generation nuclear
reactors. To this end we performed equilibrium molecular dynamics simulations and computed the
change to thermal conductivity due to a series of clustering and non-clustering point defects using the
Green–Kubo method. In addition, we present a comprehensive discussion of several approaches to
converge the integral of the heat current autocorrelation function. Our calculations show that more
energetically favorable clustering defects exhibit fewer low frequency modes and increase the anisotro-
pic nature of graphite selectively exerting a significant effect on thermal resistance along the c-axis.
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1. Introduction

In the early 1940s, polycrystalline graphite was the only abun-
dantly produced material with the required purity to be used as a
moderator in nuclear reactors [1]. While other reactor materials
have since been adopted, at the present time, graphite is still in
high demand for the development of high-tech fuel elements for
next-generation nuclear reactors. Graphite or pyrolytic carbon is
included in nuclear fuel assemblies to encapsulate the fissile
material. In these applications, in addition to utilizing its high tem-
perature strength, the graphite acts as a neutron moderator and
reflector. In some fuels graphite encapsulates the fissile materials
in which case all the heat produced by fission in a fuel pin must
be conducted out through the graphite. As the moderating proper-
ties of graphite are temperature dependent, accurately predicting
the thermal conductivity of graphite and other fuel assembly mate-
rials—including how their thermal conductivity evolves under
irradiation—is vitally important for the design of accident tolerant
fuels.

The thermal conductivity (j) of graphite is experimentally
found to change with synthesis conditions and while in service
as a direct result of radiation [2]. This indicates that j is not an
intrinsic property and is instead governed by the defect morphol-
ogy of the graphite. Simulations typically measure intrinsic proper-
ties, but we aim to determine an atomistic level understanding of
scattering processes from collections of irradiation induced point
defects and to establish a systematic understanding of how defect
type, number and different defect-type ensembles affect thermal
resistance and phonon mean free path in graphite. We do so with
the goal that the insight that we gain can be incorporated into
approaches for quantitatively predicting the lattice thermal
conductivity that are based on solving the Boltzmann transport
equation. Such a tool would be useful to nuclear engineers and
materials scientists in the process of designing new reactors and
fuel systems that are accident tolerant. As the first step along this
path, we have computed the energy and structure of a zoo of point
defects and determined their separate effects on thermal conduc-
tivity along and across the basal plane.

In Section 2 we establish and validate our method for comput-
ing thermal conductivity of defect-free graphite. More specifically,
we discuss advantages and challenges associated with the Green–
Kubo formalism: in Section 2.1 we discuss different approaches to
converge the heat current autocorrelation function (HCACF) and
propose a solution based on our findings; the issue of size conver-
gence is explained and addressed in Section 2.2. After establishing
an adequate system size, we introduce defects and compute their
formation energies in Section 3. Values are obtained using classical
molecular dynamics and compared with density functional theory
(DFT) calculations. Interstitial defects are also annealed to find the
most energetically favorable configuration. In Section 4 we com-
pare the perfect crystalline system, where transport is limited by
crystal lattice anharmonicity and the acoustic phonons carrying
the bulk of heat are only scattered by other phonons, with systems
with point defects, where defect scattering is expected to play a
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crucial role in thermal transport. Concluding remarks are pre-
sented in Section 5.
2. Computational method and validation

Molecular dynamics modeling captures the anharmonic inter-
actions of atomic vibrations that carry heat and both equilibrium
and non-equilibrium simulations can be used to predict thermal
conductivity [3]. The Green–Kubo formalism [4,5] is a well estab-
lished equilibrium molecular dynamics approach that has been
used successfully to compute thermal conductivity in a wide range
of materials from silicon [6] to metal–organic-frameworks [7]. This
method is derived from the fluctuation–dissipation theorem and
computes the thermal conductivity, j, from the equilibrium
fluctuations in the heat current vector, J, by:

jxx ¼
V

kBT2

Z 1

0
CJxxðsÞ ds; ð1Þ

where kB; T and V are the Boltzmann’s constant, temperature and
volume of the simulated region respectively. The term CJðsÞ ¼
JðtÞJðt þ sÞh i, and is the non-normalized heat current autocor-

relation function (HCACF). The net flow of heat fluctuates about
zero at equilibrium and the thermal conductivity is related to
how long it takes for the fluctuations to dissipate. Both equilibrium
and non-equilibrium molecular dynamics (NEMD) simulations
suffer from size artifacts that must be mitigated. In NEMD, the
simulated system size must be larger than the intrinsic mean-free
path of the phonons in order to eliminate ballistic transport
between the heat source and sink [3]. Equilibrium MD affords one
a smaller system size as phonons may move through periodic
boundaries unhindered.

Simulations were performed with the large-scale equilibrium
classical molecular dynamics software LAMMPS [8]. After relaxing
the atomic structure, along with the size of the compute cell, all
systems were given a thermal energy equivalent to 300 K and equi-
librated in the microcanonical ensemble (NVE) for 50 ps before
starting to record the HCACF. The simulations were then per-
formed for an additional 0.6 ns with a 0.2 fs time step and periodic
boundary conditions. Throughout the period in NVE the average
temperature remained at approximately 300 K. This is well below
the Debye temperature for graphite (approximately 2500 K in the
basal plane and 950 K along the c-axis [2]). However, our goal is
a comparative analysis of phonon scattering from and around the
defect. As scattering from classically occupied high frequency
modes is present with and without the defect this has little con-
tribution to the change in j. The adaptive intermolecular reactive
empirical bond-order (AIREBO) potential function formulated by
Stuart et al. [9] was used for all simulations. The AIREBO potential
includes anharmonic terms in the carbon bonds, an adaptive treat-
ment of the non-bonded and dihedral angle interactions and has
the capability to model the interaction between layers in graphite
[9]. Two main challenges result from using the Green–Kubo: (1)
determining an appropriate system size and (2) converging the
HCACF. We shall first address the latter challenge and propose a
solution based on the work of Chen et al. [10].

2.1. HCACF convergence

There is no average heat flux, Jh i, for a system in equilibrium,
and the HCACF, i.e. the term inside the integral in Eq. (1), is there-
fore expected to decay to zero given sufficient time. Instead, long
lived oscillations with a significant contribution to the computed
thermal conductivity have been observed [11–14]; this behavior
is illustrated in Fig. 1. The HCACF is crucial in computing j using
the Green–Kubo method and yet there is little consensus among
researchers on whether these oscillations are significant to thermal
transport or a result of noise, and as to what approach to take. A
discussion of this behavior and of possible approaches to converg-
ing the HCACF is essential in understanding the limitations of the
Green–Kubo formalism and validating thermal transport
calculations.

Fig. 1(a) shows the accumulation of the averaged HCACF along a
basal direction over a typical simulation. It can be seen that the tail
of the HCACF contains many fluctuations, but rather than these
decaying smoothly as more data is averaged there occur sporadic
events that can overwhelm the average to add new fluctuations
to CJðsÞ and significantly change the initial value CJð0Þ. These large
events show up in the majority of simulations and for all simulated
system sizes. Long lasting oscillations are prevalent along the basal
plane and are different from oscillations along the c-axis (see
Fig. 1). Fluctuations along the c-axis exhibit a higher frequency
and oscillate around zero with the HCACF converging to zero with
only minor instabilities affecting its integral. Fluctuations along the
basal plane, on the other hand, do not fade away during com-
putation time and significantly affect j. In graphite, j calculations
in the c-direction are not affected by HCACF fluctuations as much
as basal plane calculations are. This makes results perpendicular
to the basal plane easier to compute and more reliable.

Along the basal plane the HCACF exhibits a two-stage decay: a
rapid decay associated with high frequency phonons and a slower
decay associated with lower frequency phonons. Similar two-stage
decay (or three-stage decay) is observed in many single element
materials and different authors have modeled j by fitting the
HCACF to the sum of two or more exponentials [13–15]. This is a
more physically meaningful approach than a single exponential
fit in that it captures multiple relaxation processes, but it neglects
the contribution of the HCACF tail, which results in a systematic
underestimation of j [3,14]. When addressing the issue of conver-
gence in the HCACF we have examined a wide variety of strategies.
These strategies include direct integration of the HCACF truncated
to various cutoffs, fits of varying sums of exponentials to the trun-
cated HCACF, and fits in the frequency domain. Here we present
only a few of the best or otherwise insightful findings and a brief
discussion of our approach.

(i–iv) Direct numerical integration of the truncated HCACF up to (i)
50 ps along z and 20 ps along x and y, (ii) 5 ps, and (iii–iv) a
noise dependent cut off time, tc , proposed by Chen et al. and
described below [10]. For (iv) individual cut-offs were
computed for each HCACF as shown in Fig. 1(b)–(d), and
for (iii) an average tc was used for each simulation set.

(v) Single exponential fits to the first 5 ps of the HCACF.
(vi) The fitting procedure proposed by Chen et al., which

includes a fixed offset term in the fitting function:
CJðsÞ
CJð0Þ

¼ A1e�s=t1 þ A2e�s=t2 þ Y0; ð2Þ

such that j is computed as

jxx ¼
VCJxxð0Þ

kBT2 ðA1t1 þ A2t2 þ Y0tcÞ; ð3Þ

where A1;A2; Y0; t1 and t2 are fitting parameters. Chen et al.
argue that including the offset Y0 reduces the computational
error. In our implementation of this we used the simplex
method to optimize the fit variables. It is physically meaning-
less to have negative Y0 and this term was weighed with a
Heaviside function to prohibit negative Y0 terms. We also
imposed the condition that A1 þ A2 þ Y0 ¼ 1.
(vii) Double exponential of the form in (vi) with Yo set to zero.
(viii) Triple exponential of the form:



Fig. 1. In (a), the HCACF is computed as the simulation progresses along x for the perfectly crystalline 11� 11� 11 supercell. At first only a few values contribute to the
ensemble average and the initial HCACFs are noisy. As the averaging time progresses the HCACF becomes smoother with the exception of well defined crests and troughs,
most of which do not fade away during the total simulation time. (b), (c) and (d) correspond to the HCACF noise (computed as F(t)), the final HCACF, and the integral of the
HCACF, respectively, for all simulations of the perfect 11� 11� 11 supercell system along y and z (or c). In (d), the black curves correspond to each individual simulation
before its cut-off time, and in (c) and (d) the vertical black lines indicate the average cut-off time of all simulations, as described in the text.
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CJðsÞ
CJð0Þ

¼ A1e�s=t1 þ A2e�s=t2 þ ð1� A1 � A2Þe�s=t3 ; ð4Þ

fit to each HCACF.
The issue of the cut-off time should now be discussed, before
analyzing the results in Fig. 2. The necessity to truncate the
HCACF is illustrated in Fig. 1 in which it can be seen that after
roughly 2–5 ps the integrals of the autocorrelations diverge even
though the HCACF is almost zero. This divergence arises from the
integration of random fluctuations in CJðsÞ effectively adding a ran-
dom walk to the integral of CJðsÞ. The error from this random walk
grows over time, while the systematic error from omitting the long
tail of slow decay processes in the HCACF diminishes over time.
There exists an optimal truncation point that minimizes the error
in the integral of CJðsÞ, but there is little consensus in the literature
on how to determine it [12,3]. While selecting a consistent cut-off
may often suffice to obtain a comparative analysis, it introduces a
systematic error in the estimation of the HCACF, potentially
neglecting the contribution of lower phonon modes to k. Chen
et al. [10] propose obtaining a quantitative description of the
numerical noise in the relative fluctuation of the HCACF, F(t),
defined as

FðtÞ ¼ rðCJÞ
EðCJÞ

����
����; ð5Þ

where r is the standard deviation and E the expected value of the
HCACF in an interval (t; t þ dt). The cut-off point is determined to
be above an F(t) of 1 (see Fig. 1(b)–(d)), i.e. when the scale of the
fluctuations become the same as the mean. Chen et al. suggest that
F(t) is insensitive to the choice of d. We find this is the case for only
small variations and between a d of 1, 3, and 5 ps the best results
correspond to the 1 ps interval. Both 3 and 5 ps intervals resulted
in outliers with a significant effect on j. The variability we observed
with the choice of d suggests that obtaining a good fit using this
method requires a balance between having sufficient data points
to compute the local averages while maintaining enough temporal
resolution to reasonably determine at what time the noise exceeds
FðtÞ ¼ 1. A cut-off point was computed for each run and the average
cut-off point for a given system was then obtained. Curves without
a cut-off up to the maximum HCACF time computed for each direc-
tion were factored in with a cut-off equivalent to the total HCACF
time. Each system was simulated 10 times. We compared j for
the cases when d was 1, 3 and 5 ps with j being computed using
both each independent simulation’s cut-off (as in Chen et al.) and
using the average cut-off for all simulations. We found that using
the average cut-off yielded similar results with error bars signifi-
cantly smaller than using the corresponding systems’ individual
run cut-offs to compute j for each simulation within a cell size.
In theory, if we could consider the average local fluctuations in
the heat flux over an infinite amount of time, we should be able
to find a ‘‘true’’ thermal conductivity of a given system. It is then
reasonable to assume that each HCACF is an approximation to an
HCACF obtained over infinite time and that there is a ‘‘true’’
cut-off point, thus providing an argument for using the average
cut-off on each individual run to compute j.

When only the first two terms of the HCACF were computed, as
in (vii), Y0 contributed up to over 100 W/(mK) in the most extreme
case. This illustrates the insufficiency of the two exponential fits to
estimate j. The sum of three exponential fits yields results very
similar to the strategy adopted by Chen et al. with the added modi-
fication of using the average cut-off instead of each individual
simulation’s cut-off. However, as the number of fitting variables
increases, results are expected to mimic those of a full integration
and the fit loses its physical significance. This correspondence
nevertheless suggests Eq. (4) to be an adequate fit and sub-
stantiates the cut-off method. More strikingly, simply using the
average cut-off as the HCACF integration limit yields similar results



Fig. 2. (a) corresponds to j measured for different supercells along x and y in the basal plane and (b) to j computed along the c-axis. The text in (a) corresponds to the
direction in which j was measured (x or y) and the supercell size along that direction. The x-axis in (a) and (b) corresponds to the actual supercell length along the specified
direction—note that the cluster of points for a single length have been spaced out slightly in x in order to make the plot more readable by removing overlays of error bars. The
black crosses mark the true abscissa of all error bars in a cluster of points, labeled (i) to (viii). In addition to establishing size convergence, the figures illustrate a set of
different approaches (labeled in the legend) considered to converge the HCACF and the corresponding standard error. Method (iii) was selected; in (a) the error bars
corresponding to this method have been made to coincide with the true length (marked with Xs), around which the other error bars are distributed.
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with error bars comparable to the fit. The correct behavior of the
HCACF along the basal plane is thus more accurately explained
by the fit type suggested by Chen et al. than merely the sum of
exponentials, but in order to compute actual j values, the fit intro-
duces an unnecessary hassle to no gain. Furthermore, the nature of
the HCACF along the c-axis is very different than that of the basal
plane, as can be seen by looking at Figs. 1 and 2, and this fit type is
not adequate to explain the HCACF perpendicular to the basal
plane. That said, the error bars are noticeably smaller when the
HCACF is integrated only up to tc than when they are integrated
over the total HCACF time. Note that the HCACF is computed up
to 20 ps along the basal plane and 50 ps along the c-axis. This is
because along the c-axis the tail of the HCACF has an increased
contribution to the total thermal conductivity. The same does not
occur along the basal plane, as evidenced by a comparison between
the fit (vi), suggested by Chen et al., and (iii), the method selected.
We have furthermore observed no trend in the truncation time
with size. Instead, a systematic error appears to be introduced
for a given system size where j values in both x and y tend to be
either above or below the mean thermal conductivity of all
systems’ simulations. The simplest, most effective approach is to
select the cut-off for each simulation by setting F(t) = 1 and to
use the average cut-off of all simulations when computing each
simulation’s individual j. This method is adequate to compute j
along any direction for highly oriented graphite.

While there is no consensus on the best method to reduce noise
and capture the nature of the HCACF of graphite and other materi-
als, the approach selected in this paper yields j estimates higher
than a sum of exponentials, with moderately small error bars
and without the need of a complicated fit. This method was used
for all defect calculations along the basal plane and along c, taking
into account that the cut-off along c must neglect the first values of
F(t) � 1 that take place in the initial decay stages (see Fig. 1). Being
consistent with the choice of method is often sufficient for a sig-
nificant comparative analysis and this method allows us to do that.
2.2. Size convergence

Periodic boundary conditions allow simulations of a small num-
ber of particles to mimic the behavior of an infinite solid; however,
they limit the number and wavelength of the vibrational modes
available to carry heat. Thus, when using the Green–Kubo method
it is first necessary to establish size convergence. Thermal conduc-
tivity values were computed for perfectly crystalline systems of
varying size, as can be observed in Fig. 2. An 8 atom unit cell
was defined and 7 systems ranging between 3� 3� 3 and
15� 15� 15 supercells and an additional 17� 17� 11 supercell
system were simulated (again 10 times each). Along the basal
plane the systems’ size was asymmetric in the x and y dimensions
with x smaller than y—this was done to better gauge potential size
artifacts. While there was a large variability in the thermal conduc-
tivity—the values are scattered between 300 and 400 W/(mK)
along the x-direction and 250 and 400 W/(mK) along the y—the
system size appears to be converged early on. There is no evidence
of a system size artifact, but to be cautious different x and y values
were maintained when computing thermal conductivity in defec-
tive systems as well. For computations performed with defects,
the 11� 11� 11 supercell was selected to allow for a big enough
compute cell with a feasible computational expense associated.
The 11� 11� 11 supercell corresponds to a 10648 atom system

in the perfect graphite, with a 27:05 � 46:86 � 73:79 Å
3
volume

in the x; y, and z directions, respectively.
It is important to note that although the thermal conductivity

that we obtain using the Green–Kubo method in the c-direction
is close to the experimental value, in the basal direction j obtained



Fig. 3. Illustration of the defects examined in this study: Stone–Wales defect (a); single interstitial (b); 2–8 interstitials (c)–(i); single vacancy (j), di-vacancy (k), and 3
vacancies (l). The interstitial defects are shown in their annealed configurations.

Fig. 4. Possible defect types for single (a) and two-interstitial defects (b).

Fig. 5. Slice of a graphite system with an hexagonal platelet, indicating the location
of the defect. There are 22 total layers in the system.

Fig. 6. Schematic of the optimization procedure applied to classically simulated
defects before computing formation energies.
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from simulations is roughly one order of magnitude lower than the
experimentally measured value of 4180 W/(mK) [16]. There are a
number of potential sources for this discrepancy that include the
classical occupation of high frequency modes, the exclusion of long



Fig. 7. These energies correspond to the defects depicted in Fig. 3. In the case of the
interstitial defect-types, values were computed both for annealed and non-
annealed systems.
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wavelength modes by the small system size, or incorrect anhar-
monicity in the interatomic potentials. Without a satisfactory
explanation of this discrepancy we proceed (cautiously) and focus
on the trend in j due to defects, and in particular the effect of
defects on the c-axis conductivity. To benchmark what might be
expected from the introduction of defects, we remark that experi-
mental results have shown a decrease by an approximate factor of
10 for IG-110U and ETP-10 graphite types irradiated at 0.02 dpa
(displacements per atom) at 200 �C, with an unirradiated j of near
100 W/(mK) [17]. The GC-30 type graphite shows only an approxi-
mate factor of 4 decrease from unirradiated to irradiated under the
same conditions as the aforementioned types, from an initial j of
16 W/(mK) [17]. All three graphites decreased by an additional
factor of 4 when irradiated at 0.25 dpa [17]. Ishiama et al. observe
a similar factor of 4 decrease in graphite with an unirradiated value
of 160 W/(mK) when exposed to 11.9 dpa radiation at room tem-
perature [18]; such high dpa values would however quickly result
in the amorphization of graphite [19] and its anisotropy would be
lost.

3. Identifying defect structures

In irradiated graphite carbon atoms are displaced due to cas-
cade reactions giving rise to many point defects in what is termed
the Wigner effect. We categorize these into defects that have a
strong driving force for clustering, such as vacancies and intersti-
tials, and defects that are less driven to cluster such as bond rota-
tion defects, and isotopic defects. The following clustering defects
were considered: a single interstitial (Fig. 3(b)), a single vacancy
(Fig. 3(j)), clusters of 2–8 interstitials (Fig. 3(c)–(i)) and clusters
of 2–3 vacancies (Fig. 3(k) and (l)). For a single interstitial, three
interstitial locations were considered, as depicted in Fig. 4(a).
Similarly, four configurations were simulated for 2-interstitial
clusters, as shown in Fig. 4(b). The single vacancy site is between
the centers of hexagonal voids on the planes adjacent to the
plane of the vacancy, i.e. where the type A single interstitial is posi-
tioned in Fig. 4(a), but in the lower, less visible layer. The added
vacancies lie directly between atom sites on the adjacent layers.
The non-clustering defects considered were a Stone–Wales defect
(Fig. 3(a)) and an isotope. The C14 isotope was selected for having
a higher mass than C13, another common carbon isotope, and thus
Table 1
Classical MD energy calculations for single and double interstitial defect types based on loc
functional theory (DFT) calculations using the local density approximation (LDA) from Ref

Defect type Single: A Single: B Single

LAMMPS 3.57 eV 4.73 eV 4.46 e
Literature (DFT, LDA) [21] 6.7 eV 7.7 eV 7.4 eV
being expected to have a higher contribution to changes in j. The
defects were introduced to the center of the selected 11� 11� 11
perfect system; the interstitial defects were placed between the
11th and 12th layer of the 22 layer cell, and the remaining defects
within the 11th layer, as shown in Fig. 5.

Formation energies were computed using classical MD for all
defects. These calculations were used to estimate the likelihood
of formation of each defect, where the energy per defect is given by

Ed ¼ ED �
EO

NO
ND: ð6Þ

ND and NO are the number of atoms in the defective system and the
corresponding non-defective system, in that order. ED corresponds
to the total energy of the system and EO to the total energy of the
perfect system of the same size.

The optimization process for the classical calculations is
described in the flowchart in Fig. 6 and was performed using the
FIRE scheme [20] as implemented in LAMMPS, thus allowing for
both the relaxation of the atomic positions and the supercell size.
As part of the process to optimize the geometry of the interstitial
defects, platelet-like defects were also annealed and subsequently
cooled. The defects were annealed to 1500 K for 500 ps and cooled
to 300 K for 1 ns, in the canonical ensemble (NVT). By doing this we
allowed the already low energy interstitial defects to migrate and
rearrange themselves into potentially lower energy configurations.

Energy values for the different defect types and numbers are
depicted in Fig. 7 and in Table 1. Classical interstitial defect
energies were computed for the optimized structures before and
after annealing. It is notable in Fig. 7, that the annealing process
often yielded defect structures with considerably lower energy
than those reached by direct relaxation using the FIRE algo-
rithm—even for very simple defects such as a lone interstitial.
There is a good agreement between the overall trend of defect
energies as modeled with the AIREBO empirical potential and
those from Li et al. [21] computed using density functional theory
(DFT) with the local density approximation (LDA) (see Table 1).
Interestingly, the type A single interstitial when annealed
becomes structurally similar to Li et al.’s 5.5 eV formation
energy ‘‘free’’ interstitial, computed with DFT. Telling et al. find
the same low energy configuration value with LDA for a so-called
‘spiro-interstitial’ (type B in Fig. 4(a)) when the surrounding
lattice is sheared approximately half of a bond length towards
ABC stacking [22]. Pre-AIREBO MD simulations using an optimized
Tersoff potential yielded a 5.8 eV formation energy for a single
interstitial [23]. Stone–Wales defects have the lowest formation
energy of all intrinsic defects in graphenic systems [24], calculated
with DFT at 5.2 eV [21]. A single vacancy of the type simulated in
this paper has been computed at 8.2 eV using LDA, and an in-plane
divacancy at 8.7 eV (comparable with our 9.7 eV calculation) [22].
In an earlier work, Kaxiras and Pandey reported a 7.6 eV formation
energy for a single vacancy [25].
4. Thermal resistance from defects

The computed j values for nine graphite systems each including
a different defect are given in Fig. 8. These systems include the more
energetically favorable interstitial platelets, and all values were
ation. The values obtained for a single interstitial are compared with available density
. [21].

: C Two: A Two: B Two: C Two: D

V 4.99 eV 3.27 eV 2.95 eV 2.98 eV
– – – –



Fig. 8. j obtained for different defect types along x and y (a) and in the basal plane
(b); and the anisotropy ratio, i.e. ja=jc , computed for both x and y for the same
defect types (c).

Fig. 9. Discrete cosine transform applied to the c-axis HCACF for different defect
types.
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obtained using the Green–Kubo method as with the perfect crystal.
For j in the basal direction, it can be seen that all defects with the
exception of vacancies produce a small but pronounced degrada-
tion of j that is outside the error bars of the calculation. Among
the defects that reduce j in the basal direction there is little differ-
ence in their impact, with the larger platelet defects providing a
fractionally larger reduction in j. In contrast, the effect on j in
the c-direction is dramatic, with little impact on j from single atom
defects but a large impact from clustered defects, especially clus-
tered interstitials. Interstitial clusters are low energy defects and
are therefore more likely to occur under irradiation.

Performing a discrete cosine transform (DCT) of the HCACF
reveals the presence of localized modes exclusively associated with
the lower thermal conductivity defect types (see Fig. 9). We per-
formed DCTs for the defect systems both along x; y and z, and found
two notable differences between systems in the DCT of the c-axis
HCACF. Systems containing interstitial platelets developed a series
of peaks at � 1:3;2:5 and 3 THz. We attribute these to rattling of
the platelets in the c-direction and the defects being large enough
to have relatively low frequency vibrational modes. More interest-
ingly, there is a dramatic reduction in the intensity of low
frequency modes in the HCACF of the systems with diminished
thermal conductivity.

Thermal conductivities were also computed for differently sized
systems containing the 6 atom (hexagonal) platelet. In the results in
Fig. 8 there is little difference in terms of how the number of inter-
stitials in a cluster (between 5 and 8) affect the overall thermal con-
ductivity in the system; however, we expect a dependence on the
concentration of defects. To examine this dependence on defect
spacing, j was computed for a number of differently sized systems
each containing a hexagonal interstitial platelet (Fig. 10).
Additionally, we simulated an 11� 11� 11 supercell containing
two vertically aligned interstitial platelets thereby altering the
c-spacing independent from the basal spacing (the last datum in
Fig. 10). There is little change in the thermal conductivity in the
basal direction due to variations in either the basal or c spacing of
defects. More interestingly, the thermal conductivity in the
c-direction varies systematically with the areal density of defects
projected on the basal plane. It is insightful to compare this work
with Rajabpour and Allaei’s study of the effect of interlayer covalent
bonding on the thermal conductivity of bilayer graphene [26]; they
find that a 2% concentration of sp3 bonding in an otherwise pristine
bilayer of graphene decreases its thermal conductivity by a factor of
approximately 60%. They further observe a higher in-plane reduc-
tion in j due to a decrease in high frequency modes. Along the c-di-
rection they observe small changes in low frequency modes. This
suggests the significant j change perpendicular to the basal plane
observed in the presence of inter-layer platelets to be mostly due
to the additional atoms along this direction while the smaller
change in j along the basal plane could be the result of the intro-
duction of few sp3 bonds due to the presence of these defects.

Matthiessen’s rule states that when more than one source of
scattering is present and if the scattering processes that add to
the resistivity are independent, then their mobilities can be added
as:

1
l
¼ 1

limpurities
þ 1

llattice
þ 1

ldefects
þ � � � ð7Þ

Based on this premise, and given that j / l, if we consider the
additive contributions to the thermal resistance, r ¼ 1=j, of the
system, it must follow that:

rdefective ¼ rperfect þ rdefects; ð8Þ



Fig. 10. Hexagonal platelet resistivity (r) and corresponding standard error
computed along x and y in the basal plane (a) and along the c-axis (b) for 4
different supercell sizes and for two hexagonal platelets in the same base system.
(c) corresponds to a plot of the same resistivities for the hexagonal platelet against
the inverse area of the basal plane for each system size. In (c), the value for two-
sized platelet is shown in darker green and red errorbar. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of
this article.)
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i.e. if the scattering from each defect is independent, we expect
the defects to have an additive contribution to the systems’ ther-
mal resistance. The additional thermal resistance due to the defect
is rdefect ¼ rdefective � rperfect, computed in Fig. 10, where rdefective and
rperfect are the thermal resistance of the same size system with
and without the defect, respectively. One might therefore expect
the thermal resistance for a given system size containing two
defects of the same type to be rdefective�2 ¼ rperfect þ 2 � rdefect, or
rdefective�2 ¼ 0:43� 0:06 W/(mK) for the system with two hexagonal
platelets. Instead, the total resistivity value for the two-platelet
system is 0:29� 0:06 W/(mK) and adding a defect does not double
its thermal resistance. The small change in resistivity observed for
the two-platelet system compared with the single-platelet system
suggests the total defect concentration is not the only determining
factor in how clustering defects affect the thermal conductivity in
graphite. The linearity observed between the added thermal resis-
tance and the inverse of the basal plane area, Abasal, for the different
system sizes, as shown in Fig. 10(c), seems to imply that the dis-
tribution of defects in the basal plane affects its total resistivity
in the c-direction. Size artifacts in the smaller, 1000 atom system
and the significantly smaller spacing along z proportional to
x and y could contribute to a higher resistivity in this system.
It is also relevant that, along the c-axis, for the 6 interstitial
platelet rdefects ¼ 0:16� 0:03 (mK/W) or four times 6 � rdefects ¼
0:04� 0:17 (mK/W) if the single interstitial thermal resistance is
used to compute rdefects. In other words, the added resistivity con-
tribution of the platelet is greater than the contribution presumed
from Matthiessen’s rule for the sum of six individual interstitials.
5. Conclusions

In this work we have reported calculations of the reduction in
thermal conductivity of graphite due to a series of point defects
typical under irradiation. The calculations reveal three important
conclusions:

� Clustered interstitial defects are stable (with respect to lone
interstitials) and strongly detrimental to the thermal transport
particularly along the c-axis direction.
� In addition to lowering the thermal conductivity interstitial pla-

telets also increase the thermal conductivity anisotropy.
� Although the uncertainty in the calculations of j is large, it is

clear that along c the platelets provide an added thermal resis-
tance that is approximately 4 times larger than that of their
constituent number of lone interstitials.
� For the system sizes experimented with we observe that the

thermal conductivity along the c-direction is sensitive to the
spacing of defects in the basal plane.

In pebble bed reactors graphite is used to encapsulate the fissile
materials and thus the graphite experiences an extremely large
neutron dose. The average fuel temperatures in such a reactor is
1200 K (with peak temperatures expected to stay below 1500 K)
[27]. At these temperatures interstitials are highly mobile and
readily condense into interstitial platelets. These platelets are
responsible for c-axis swelling under irradiation [2]. Our work indi-
cates that this has a doubly negative effect on thermal conductiv-
ity; elongating grains along their thermally resistive directions
while also increasing the thermal resistance in these directions.

In addition to computing the reduction in thermal conductivity
due to defects we have performed a systematic comparison of vari-
ous numerical strategies for reducing uncertainty in the integra-
tion of the HCACF. Our simulations reveal infrequent large heat
current fluctuations that are large enough to overwhelm the aver-
aged HCACF. The origin of these fluctuations is unclear to us at this
stage and we speculate two possible causes. It is possible that the
fluctuations are a manifestation of Fermi–Pasta–Ulam recurrence
[28] or some related breakdown of ergodicity over the time period
accessible to simulation. An alternative explanation is that the
fluctuations are physically realistic processes similar to rogue
ocean waves and caused by amplitude dependence of the phonon
dispersion in graphite. It has been proposed that carbon nanotubes
possess soliton-like heat carriers [29] and it is possible that similar
conditions may arise in graphite. These two potential explanations
are incompatible and would require one to treat the fluctuations
differently: in the first case removing their effect from computed
thermal conductivity, and in the latter case performing enough
simulations to obtain a statistically significant sampling of these
infrequent fluctuations.
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[13] J. Che, T. Çağın, W. Deng, W.A. Goddard III, J. Chem. Phys. 113 (16) (2000)
6888–6900.

[14] J. Li, L. Porter, S. Yip, J. Nucl. Mater. 255 (2) (1998) 139–152.
[15] A.J.H. McGaughey, M. Kaviany, Phys. Rev. B 69 (2004) 094303, http://
dx.doi.org/10.1103/PhysRevB.69.094303.

[16] D. Morgan, Thermal properties and characteristics of pocofoam, in: Thermal
Conductivity 26: Thermal Expansion 14: Joint Conferences, August 6–8, 2001,
Cambridge, Massachusetts, USA, DEStech Publications, Inc., 2005, p. 259.

[17] T. Maruyama, M. Harayama, J. Nucl. Mater. 195 (1) (1992) 44–50.
[18] S. Ishiyama, T. Burchell, J. Strizak, M. Eto, J. Nucl. Mater. 230 (1) (1996) 1–7.
[19] K. Niwase, Phys. Rev. B 52 (22) (1995) 15785.
[20] E. Bitzek, P. Koskinen, F. Gähler, M. Moseler, P. Gumbsch, Phys. Rev. Lett. 97

(17) (2006) 170201.
[21] L. Li, S. Reich, J. Robertson, Phys. Rev. B 72 (18) (2005) 184109.
[22] R.H. Telling, C.P. Ewels, A. Ahlam, M.I. Heggie, Nat. Mater. 2 (5) (2003) 333–

337.
[23] K. Nordlund, J. Keinonen, T. Mattila, Phys. Rev. Lett. 77 (4) (1996) 699.
[24] Y. Miyamoto, A. Rubio, S. Berber, M. Yoon, D. Tománek, Phys. Rev. B 69 (12)

(2004) 121413.
[25] E. Kaxiras, K. Pandey, Phys. Rev. Lett. 61 (23) (1988) 2693.
[26] A. Rajabpour, S. Vaez Allaei, Appl. Phys. Lett. 101 (5) (2012). pp. 053115–

053115.
[27] S. Ion, D. Nicholls, R. Matzie, D. Matzner, Pebble bed modular reactor the first

generation iv reactor to be constructed, in: World Nuclear Association Annual
Symposium, 2003, pp. 3–5.

[28] E. Fermi, J. Pasta, S. Ulam, Studies of nonlinear problems, Los Alamos Report
LA-1940, 1955, p. 978

[29] C. Chang, D. Okawa, H. Garcia, A. Majumdar, A. Zettl, Nanotube phonon
waveguide, Phys. Rev. Lett. 99 (4) (2007) 045901.

http://refhub.elsevier.com/S0927-0256(15)00163-9/h0015
http://dx.doi.org/10.1063/1.1740082
http://dx.doi.org/10.1143/JPSJ.12.570
http://dx.doi.org/10.1143/JPSJ.12.570
http://jpsj.ipap.jp/link?JPSJ/12/570/
http://dx.doi.org/10.1103/PhysRevB.61.2651
http://dx.doi.org/10.1103/PhysRevB.61.2651
http://link.aps.org/doi/10.1103/PhysRevB.61.2651
http://link.aps.org/doi/10.1103/PhysRevB.61.2651
http://dx.doi.org/10.1016/j.commatsci.2014.06.008
http://dx.doi.org/10.1016/j.commatsci.2014.06.008
http://www.sciencedirect.com/science/article/pii/S0927025614004194
http://dx.doi.org/10.1006/jcph.1995.1039
http://dx.doi.org/10.1006/jcph.1995.1039
http://www.sciencedirect.com/science/article/pii/S002199918571039X
http://www.sciencedirect.com/science/article/pii/S002199918571039X
http://refhub.elsevier.com/S0927-0256(15)00163-9/h0045
http://refhub.elsevier.com/S0927-0256(15)00163-9/h0050
http://refhub.elsevier.com/S0927-0256(15)00163-9/h0055
http://refhub.elsevier.com/S0927-0256(15)00163-9/h0055
http://refhub.elsevier.com/S0927-0256(15)00163-9/h0055
http://refhub.elsevier.com/S0927-0256(15)00163-9/h0055
http://refhub.elsevier.com/S0927-0256(15)00163-9/h0060
http://refhub.elsevier.com/S0927-0256(15)00163-9/h0060
http://refhub.elsevier.com/S0927-0256(15)00163-9/h0065
http://refhub.elsevier.com/S0927-0256(15)00163-9/h0065
http://refhub.elsevier.com/S0927-0256(15)00163-9/h0065
http://refhub.elsevier.com/S0927-0256(15)00163-9/h0070
http://dx.doi.org/10.1103/PhysRevB.69.094303
http://dx.doi.org/10.1103/PhysRevB.69.094303
http://refhub.elsevier.com/S0927-0256(15)00163-9/h0080
http://refhub.elsevier.com/S0927-0256(15)00163-9/h0080
http://refhub.elsevier.com/S0927-0256(15)00163-9/h0080
http://refhub.elsevier.com/S0927-0256(15)00163-9/h0080
http://refhub.elsevier.com/S0927-0256(15)00163-9/h0085
http://refhub.elsevier.com/S0927-0256(15)00163-9/h0090
http://refhub.elsevier.com/S0927-0256(15)00163-9/h0095
http://refhub.elsevier.com/S0927-0256(15)00163-9/h0100
http://refhub.elsevier.com/S0927-0256(15)00163-9/h0100
http://refhub.elsevier.com/S0927-0256(15)00163-9/h0105
http://refhub.elsevier.com/S0927-0256(15)00163-9/h0110
http://refhub.elsevier.com/S0927-0256(15)00163-9/h0110
http://refhub.elsevier.com/S0927-0256(15)00163-9/h0115
http://refhub.elsevier.com/S0927-0256(15)00163-9/h0120
http://refhub.elsevier.com/S0927-0256(15)00163-9/h0120
http://refhub.elsevier.com/S0927-0256(15)00163-9/h0125
http://refhub.elsevier.com/S0927-0256(15)00163-9/h0130
http://refhub.elsevier.com/S0927-0256(15)00163-9/h0130
http://refhub.elsevier.com/S0927-0256(15)00163-9/h0145
http://refhub.elsevier.com/S0927-0256(15)00163-9/h0145

	Thermal resistance from irradiation defects in graphite
	1 Introduction
	2 Computational method and validation
	2.1 HCACF convergence
	2.2 Size convergence

	3 Identifying defect structures
	4 Thermal resistance from defects
	5 Conclusions
	Acknowledgments
	References


