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ABSTRACT
High purity bulk graphite is applicable in many capacities in the nuclear industry. The thermal

conductivity of graphite has been found to vary as a function of how its morphology changes on

the nanoscale, and the type and number of defects present. We compute thermal conductivities

at the nanolevel using large scale classical molecular dynamics simulations and by employing the

Green-Kubo method in a set of in silico experiments geared towards understanding the impact of

defects in the thermal conductivity of graphite. We present the results obtained for systems with 1–

3 vacancies, and compile a summary of some of the methods applied and difficulties encountered.

INTRODUCTION
Graphite is applicable in many capacities in the nuclear industry. It is used in gaskets, sealants,

and liners, but most importantly, it is used as a moderator and a reflector, and its unique properties

are being exploited in order to develop high-tech fuel elements for next-generation nuclear reactors.

While graphite has been comprehensively studied since the 1950s [4], there are aspects of its

thermal conductivity (κ) which have yet to be well understood. Graphite is highly anisotropic

and the thermal conductivity along the basal plane (κa) differs significantly from that along the

c-axis (κc), with an experimentally computed anisotropy ratio (κa/κc) just below 210 at 300K in

near-ideal graphite [3]. Furthermore, the thermal conductivity in bulk graphite varies as a function

of how the material is manufactured and its exposure to radiation and high temperatures within a

reactor. Our motivation is to establish a systematic understanding of how defect type, number and

different defect-type ensembles affect thermal resistance in graphite. Defects can occur at different

scales, and while grain boundaries, porosity and amorphous regions, for instance, can significantly

affect thermal transport, in our first steps towards achieving our goal we examine point defects. In

this Proceedings paper we report on a collection of vacancy defects. In addition, we summarize

the methods we have developed for studying phonon scattering around defects and some of the

difficulties that arise when computing κ in graphite.

METHODS
Simulations were performed using large-scale equilibrium classical molecular dynamics. More

specifically, we use the LAMMPS [6] software, distributed by Sandia National Laboratories.

Molecular dynamics (MD) is a powerful tool for understanding thermal behavior and phonon scat-

tering. However, there are several limitations to MD that make qualitative predictions of thermal

conductivity unlikely. To mitigate this and to gain insight into how thermal resistance varies at the

atomic-level and as a function of the different defects, we perform a comparative analysis. In this

study, we compare the thermal conductivity and corresponding anisotropy ratios obtained between

the different defective systems and the perfect crystal, as well as in different regions within each

system. κ is computed along each axis, for each system and in specific regions within each system,
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by employing the AIREBO [7] [1] potential, as it is implemented in the LAMMPS MD package,

and the Green-Kubo formulation [2] [5] in the microcanonical ensemble (NVE). The Green-Kubo

method (see Equation 1), derived from the fluctuation-dissipation theorem, utilizes the ensemble

average of the autocorrelation of the instantaneous heat flux (J) to compute κ in a given direction.

In Equation 1, T is the temperature in the system or region considered, V is the corresponding

volume, and kB is Boltzmann’s constant.

κx =
V

kBT2

∫ ∞

0

〈
Jx(t)Jx(t +Δt)

〉
dt (1)

To map the local thermal conductivity we divide the compute cell into a system of 550 over-

lapping sub-regions (5, 10, and 11 along the x, y and z directions respectively). J is computed

in each sub-region, and its autocorrelation function integrated to produce a local κ . The re-

gional κ values obtained are used to compute iso-surface maps, which are discussed in the Re-

sults section. The perfect crystalline system simulated consists of 10648 atoms, approximately

(265.6×459.6×758.2) nm3, from which 1–3 atoms are removed along the basal plane, in a cen-

trally located region of the system (see Fig. 1). The difference in the size of the system along

the x and y directions results in different thermal conductivities along these axes and allows us to

identify size artifacts.

(a) Location of the vacancies within the system.

(b) 1 vacancy (c) 2 vacancies

(d) 3 vacancies — initial set up (e) 3 vacancies — during simu-

lation

Figure 1: In (a), the arrow points to where both the single vacancy and the 2–3 in-plane vacancy clusters are placed within each system. This
image corresponds to the cluster with 3 vacancies. (b) and (c) illustrate the single vacancy and double vacancy cluster within the plane, respectively.
(d) shows where the three vacancies are originally introduced, and (e) shows how the atoms rearrange themselves during the NVT simulation.

The perfect and defective systems are simulated at 300 K* with a time step of 2× 10–7 ns for

a total duration of 0.6 ns. The autocorrelation is computed for 0.015 ns. The isothermal-isobaric

ensemble (NPT) is used to bring the systems to 300 K, at which point we switch to NVE and

*It is important to note that while this is well below the Debye temperature, our goal is a comparative analysis of

phonon scattering from and around the defect — not phonon-scattering.
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simulate them for different lengths of time in order to obtain different initial atomic arrangements

for each system. Overall, our results are averaged over 20 separate simulations for the perfect

crystalline system, 11 simulations for the 2–vacancy-cluster, and 10 simulations for the remaining

defective systems.

FEATURES OF THE AUTOCORRELATION FUNCTION
When computing the autocorrelation, it was observed that rare events take place which make a

rapid and large change to the total heat current autocorrelation function
(〈

Jx(t)Jx(t +Δt)
〉)

. These

fluctuations require a long averaging time to diminish and are more prevalent in the heat current

along the basal plane than along the c-axis. The rare events, examples of which can be seen in Figs.

2(a), (b) and (c) are not present in every run, but when they occur they are large enough to affect

the resulting κ . To obtain a statistically significant sample of runs which would include them,

we simulate multiple system sizes for the perfect crystalline graphite and, using the same method

described in the Methods section, produce several runs for each system size. It is possible that these

events are artifacts of the system size; however, we do not notice any reduction in the number of

these events with increasing system size. Alternatively, the rare fluctuations observed could be

a manifestation of the Fermi–Pasta–Ulam–Tsingou problem. The effect these rare fluctuations

have on the thermal conductivity is best illustrated in Figs. 2(d), (e) and (f), which shows κ
computed as a simulation progresses. In other words, for each autocorrelation plotted as in Figs.

2(a), (b) and (c) there is a corresponding κ value obtained with the Green-Kubo formulation by

integrating along the "Autocorrelation Time" axis — these are plotted for many simulations in

Figs. 2(d), (e) and (f). While it is clear that κ tends to converge, we can observe spikes in its

value along some runs, which may occur at any time within a given run, even as it appears to

be converging, and which lasts for varying periods of time. In response to these events, several

protocols for computing thermal conductivities using different integrating schemes (see Fig. 3)

were tested. Specifically, we truncated the autocorrelation function at different times, and tried

integrating multiple exponential fits to the autocorrelation (only the best fit obtained is actually

shown in Fig. 3). Integrating the autocorrelation for 15 ps yields systematically higher thermal

conductivities, but larger error bars. Since the rare events do not take place in every run and

affect each run differently, integrating over the tail of the autocorrelation function increases the

variability of the resulting κ values, resulting in larger error bars. Integrating for a shorter amount

of time will exclude the tail and result in consistently smaller values of κ , but does reduce the error

bars. Ultimately we are constrained by computer time. Our goal is to gather as good statistics —

including rare events — as possible that allow a meaningful comparison of predicted κ values that

are not distorted by a low number of events. To this end, we are willing to underestimate kappa

in return for performing more, shorter simulations to improve ergodic sampling. Provided that we

adhere to the same integration protocol, we should be able to derive significant insight from the

various defective systems simulations concerning how the thermal resistance in graphite is affected

by point defects.

While LAMMPS may be used to compute the autocorrelation function for the entire system, to

compute maps for how the thermal conductivities vary within each system, we use our own code

to compute the autocorrelations. The code was test for agreement with LAMMPS, as can be seen

in Fig. 3. The following results are computed using our code.
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(a) 10648 atom system (b) 10648 atom system (c) 54872 atom system
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(d) 17576 atom system
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(e) 17576 atom system
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(f) 17576 atom system

Figure 2: In the first horizontal block of figures, the autocorrelation has been plotted multiple times as it is computed (and thus averaged) as the
simulation progresses. Initially, there are few values that contribute towards the ensemble average and thus the initial autocorrelation functions are
noisy. As the averaging time progresses the autocorrelations become smoother with the exception of well-defined crests and troughs (aforementioned
as rare events) which fade slowly, or not at all during the total simulation time. (a) and (b) correspond to the same run in x and y, respectively. (c)
shows the autocorrelations of the instantaneous heat-flux computed over time in the x direction for a perfectly crystalline system with 54872 atoms.
The second block of figures ((d)–(f)) corresponds to a 17576 atom system and each curve color corresponds to a a single run. Each plot corresponds
to x, y and z values. The thermal conductivity values are obtained using the autocorrelation function computed at different run times for each run
within each system.
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Figure 3: While these plots correspond to the 10648 atom system, the change in the error bars and thermal conductivity values with respect to
the integrating scheme is systematically the same for all systems. The numbers on the right of each plot correspond to the relative standard error
(not normalized out of 100%) for the x and y-axis, respectively, in (a) and for the z-axis, in (b). The first values for each protocol correspond to the
autocorrelation function computed with our code.)

RESULTS
The thermal conductivity values obtained in each axis for the different vacancy cluster defects

and the perfect system can be found in Fig. 4. While there is no statistically significant change in
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κ along the c-xis, we observe significant differences in the κx and κy values between the perfect

system and the 2 and 3–vacancy-clusters. In these clusters we see the thermal conductivity go up

with respect to the perfect crystal and the single-vacancy defect, and in the 3–vacancy-cluster case,

we observe a large difference between κx and κy. During the simulations, the vacancy and the

vacancy-clusters diffuse along the plane they were inserted in. The anisotropy ratios (Fig. 4(c))

reflect the combined changes in the thermal conductivities along the basal plane and along the

c-axis.
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Figure 4: (a) and (b) are the κ values obtained for the perfect, the single-vacancy and 2 and 3–vacancy-cluster systems, both along the basal
plane ((a)) and along the c-axis ((b)). (c) is the anisotropy ratio computed for both x and y.

The following κ-maps (Fig. 5) were intended to shed some light on how the thermal conductiv-

ities change around the defects. These maps were obtained by plotting the iso-surfaces of κ using

regionally computed thermal conductivities, i.e., by integrating the local J correlation function.

These maps are very noisy and show no systematic local change in κ . This could be possibly due

to the diffusion of the vacancy and the vacancy-clusters. While it is interesting that the noise is

stratified and that the fluctuations in thermal conductivity between regions are large, there doesn’t

seem to be a clear distinction between how thermal conductivities propagate and what their values

are in the regions near the defects. Table 1 contains the ratios between the maximum and mini-

mum thermal conductivity values found within each system, and there appears to be no significant

difference between the maximum and minimum regional κs between systems.

Perfect System 1 Vacancy 2 Vacancies 3 Vacancies

Max(κx)/Min(κx) 5.1987 7.18629 6.48254 9.09487

Max(κy)/Min(κy) 7.71476 9.85168 12.0638 13.6437

Max(κz)/Min(κz) 27.0945 24.7075 7.61275 10.6363

Table 1: Ratios between the maximum and minimum mean regional thermal conductivities within each system.

CONCLUSION
We have computed thermal conductivities of graphite containing a collection of vacancy defects.

In doing so, we have found that the vacancy-clusters increase the thermal conductivity in-plane,
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(a) Perfect - Y-axis (b) Perfect - Z-axis (c) 3 Vacancies - Y-axis

Figure 5: Thermal conductivity maps. (a) and (b) correspond to the y and z (in this order) thermal conductivity iso-surfaces obtained for a
perfect system. (c) corresponds to the 3–vacancy-cluster, in the y direction. These maps were computed from the mean value of κ obtained for 550
regions for each system.

but not along the c direction – it is, thus, possible that this is due to tension in the plane caused

by the presence of the clusters. In these simulations, we observe how large fluctuations in the heat

current correlation function pose a challenge for the prediction of κ . Finally, we have mapped κ
locally around defects. Thus far, these maps do not account for the cross correlation of energy

current between regions, but will do so in the future as we continue to develop them.

ACKNOWLEDGMENTS
We thank Phillip Jenks and Rodrigo Lopes for their assistance with some of the C++ code. This

work used the Extreme Science and Engineering Discovery Environment (XSEDE), which is sup-

ported by the National Science Foundation grant number OCI-1053575.

REFERENCES
[1] Harrison, Stuart, Ni, Sinnott, Brenner, Shenderova. J. Phys: Cond. Matt., 14:783–802, 2002.

[2] Melville S. Green. time-dependent phenomena. ii. irreversible processes in fluids. The Journal
of Chemical Physics, 22(3):398–413, 1954.

[3] CN Hooker, AR Ubbelohde, and DA Young. Proceedings of the Royal Society of London.
Series A. Mathematical and physical sciences, 284(1396):17–31, 1965.

[4] B.T. Kelly. Physics of Graphite. RES mechanica monographs. Kluwer Academic Pub, 1981.

[5] Ryogo Kubo. theory and simple applications to magnetic and conduction problems. Journal
of the Physical Society of Japan, 12(6):570–586, 1957.

[6] Steve Plimpton et al. Journal of Computational Physics, 117(1):1–19, 1995.

[7] Harrison Stuart, Tutein. J. Chem. Phys, 112:6472–6486, 2000.


