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Deterministic Phonon Transport
Predictions of Thermal
Conductivity in Uranium Dioxide
With Xenon Impurities
We present a method for solving the Boltzmann transport equation (BTE) for phonons by
modifying the neutron transport code Rattlesnake which provides a numerically efficient
method for solving the BTE in its self-adjoint angular flux (SAAF) form. Using this
approach, we have computed the reduction in thermal conductivity of uranium dioxide
(UO2) due to the presence of a nanoscale xenon bubble across a range of temperatures.
For these simulations, the values of group velocity and phonon mean free path in the
UO2 were determined from a combination of experimental heat conduction data and first
principles calculations. The same properties for the Xe under the high pressure condi-
tions in the nanoscale bubble were computed using classical molecular dynamics (MD).
We compare our approach to the other modern phonon transport calculations, and dis-
cuss the benefits of this multiscale approach for thermal conductivity in nuclear fuels
under irradiation. [DOI: 10.1115/1.4038554]

1 Introduction

One of the fundamental quantities of interest in the safe and
efficient operation of nuclear reactors is thermal conductivity ðjÞ
of the fuel, which greatly influences heat transfer throughout the
structure of the nuclear core and into the coolant [1,2]. In addition
to heat transfer, thermal conductivity is coupled to many other
processes in the reactor core. Shifting thermal gradients have a
strong influence on the macroscopic cross sections of interaction
for neutrons [1]. These cross sections are of high importance since
they dictate rates of nuclear fission, neutron absorption, and scat-
tering within the fuel. As temperatures increase, so do the effects
of Doppler broadening, which alter neutron scattering and absorp-
tion. While this is not a new phenomenon, reactor operators must
be keenly aware of the effect temperature has on the absorption
and scattering behavior of neutrons. The focus of our work is to
develop a predictive computational tool which simulates thermal
transport in heterogeneous nuclear fuel in service and under irradi-
ation, with fission product defects.

Thermal conductivity in nuclear fuel is currently obtained
through empirical relationships which have been experimentally
determined from measurements made during the past 60–70 years
[3]. Thermal resistance measurements are performed on nuclear
fuel with operating histories, i.e., irradiated fuel and values are
obtained at specific temperatures and isotope concentrations. This

approach does not consider the constantly changing concentration
of isotopic byproducts in the fuel, nor has it historically provided
appropriate values across a wide range of reactor operating condi-
tions without significant interpolation error [3,4]. Reactor design-
ers and operators, however, rely on interpolation to fill in the gaps
which can be a significant source of uncertainty in predictions of
reactor performance. Nuclear reactors are constructed conscious
to this attribute and thus have a significant conservatism and
safety margin [2].

A better predictive approach to the computation of thermal
conductivity could reduce these margins, creating improved per-
formance and economics without compromising safety. A predic-
tive simulation tool could also reduce the reliance on experiment
for the development of new fuels for advanced reactors.

Development of nuclear reactors is an ongoing process. The
current generation of power reactors is light water moderated and
use uranium dioxide ðUO2Þ fuel. In the future, generation IV
nuclear reactors will continue to use solid fuel. Uranium-based
tristructural-isotropic particles are used in prismatic block high
temperature gas reactors, while other fuels such as uranium-
molybdenum and uranium-carbide are in development for a plate
or pellet-based application [5,6]. Experimental measurements of
thermal conductivity will likely be performed on these new fuels,
and could result in more empirical correlations used to predict
their performance under irradiation. The need for a predictive
computational tool to reduce the reliance on destructive thermal
conductivity measurements is steadily increasing.

We are developing a deterministic computational framework
for simulating phonon transport. When supplied with appropriate
information (temperature, isotopic concentration of fission
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products, and material properties), this framework would predict
thermal conductivity in heterogeneous nuclear fuel with an operat-
ing history. The fission product significantly hindering thermal
transport in UO2 is widely accepted as xenon [7], a noble gas
which accumulates in UO2 over its operational life-cycle. The
bulk of thermal conductivity characterization is done with molec-
ular dynamics (MD) methodology, which models energy flow
explicitly through atomic motion. MD is effective in predicting
thermal conductivity, but is only able to model small systems of
atoms due to the significant computational cost of the method.

To this end we leverage the code Rattlesnake, which solves a
second-order form of the Boltzmann transport equation (BTE)
using the self-adjoint angular flux (SAAF) formulation [8] using
continuous finite element (CFEM) or discontinuous finite
element spatial discretization [9]. Rattlesnake is a member of the
multiphysics object-oriented simulation environment (MOOSE)
[10] architecture developed and maintained by Idaho National
Laboratory. We have shown Rattlesnake may be adapted to simu-
late phonon transport, and demonstrates promise in connecting
transport phenomena at the nanoscale to properties which may be
used at the macroscale [11]. We motivate the use of the SAAF
formulation of the transport equation and discuss the advantages
and disadvantages of the numerical solution of this equation in
comparison with solvers for the traditional first-order integro-
differential form of the equation.

Our numerical solution technique involves traditional source
iteration (SI, a Richardson iteration) methods combined with a
robust linear algebraic solver to solve the systems of discretized
equations generated by the second-order BTE. With the applica-
tion of preconditioning, we are able to rapidly solve these systems
with tremendous savings in computational cost relative to
traditional methods. Additionally, we have the capability to apply
nonlinear diffusion acceleration as these simulations become very
acoustically thick to yield an even greater convergence accelera-
tion. As such, this approach opens the door for BTE simulation to
model heat transport in relatively large systems that contain realis-
tic and statistically representative material microstructures. This
approach can potentially become a truly practical and predictive
tool to nuclear engineers and material scientists.

2 Methods

The generalized BTE is used widely by the transport commu-
nity. Phonons follow Bose–Einstein statistics in thermodynamic
equilibrium and are uncharged like neutrons, which greatly sim-
plifies the mathematical description of their behavior. The BTE
for a frequency-dependent phonon distribution fx is

@fx
@t
þ vgX � $fx ¼ _f xjscatt (1)

For brevity, we have suppressed the independent variables in
many of the terms of the equations. The phonon phase space den-
sity is fx ¼ f ðr;X;x; pÞ; where r is the spatial coordinate r �
ðx; y; zÞ; X is the unit vector denoting the direction of travel
X ¼ ð/; hÞ, and x is angular frequency. p is polarization; the
geometrical orientation of phonon travel is transverse in two
directions (T) or longitudinal (L). Group velocity vg is related to
the propagation speed of phonons, which can have either acoustic
(A) or optic (O) modes. However, for this work, we assume a sin-
gle phonon speed averaged over the acoustic modes and polariza-
tions at varying temperatures, an assumption for the transport of
gray phonons which is addressed in Sec. 2.1.

In a steady-state nuclear heat generation environment (nuclear
fuel at operating temperatures), we assume no external electrical
or magnetic field and Eq. (1) simplifies to

vgX � $fx ¼ _f xjscatt (2)

The scattering kernel _f xjscatt contains nonlinear operators and

includes contributions from processes such as anharmonic phonon
interactions or material defect scattering. Other contributions to
Eq. (2) can include thermal boundary resistance (TBR) or defect
scattering. We use a weak formulation of the phonon transport
equation, in which we include upwinding terms to describe the
interface condition of TBR, which we develop later.

We apply the single mode relaxation time approximation to
simplify the scattering kernel in Eq. (2)—we assume phonons to
occupy a single mode, with their scattering contributions collected
into a single, effective “relaxation” time, seff which is on the order
of 10�12 s, and describes the response time between phonon scat-
tering events. The kernel is now effectively a measure of the dis-
placement about equilibrium of the phonon distribution function
fx [12]

_f xjscatt ¼
f 0
x � fx
seff

(3)

here f 0
x ¼ f 0

xðrÞ has been shown to be purely spatially dependent
[11]. For small deviations of the phonon distribution function, the
scattering term may be expressed by Eq. (3). If a temperature gra-

dient is not present, f 0
x � fx ¼ 0 and the scattering term vanishes.

In solving for the phonon distribution fx at spatial location r; fx
only shifts a small amount from its local equilibrium distribution

f 0
x, fixed by the local temperature at r. Substituting Eq. (3) into the

right-hand side of Eq. (2) yields

X � $fx ¼
f 0
x � fx

K
(4)

where vg has been brought to the right-hand side to obtain K, the
phonon mean free path (the product of group velocity and relaxa-
tion time).

2.1 Transport of Gray Phonons. We apply an isotropic gray
approximation to the BTE for phonons, yielding a frequency-
independent formulation. This approach combines the contribu-
tion to transport from all phonon frequencies and polarizations,
and can be averaged into a single effective radiant energy inten-
sity of phonons with a single effective mean free path that
accounts for all scattering processes across the phonon frequency
spectrum. This is the simplest approach for capturing the ballistic
nature of phonon transport over short distances, and provides an
adequate description of heat transport physics providing that there
is no strong heterogeneity in frequency selective scattering. Equa-
tion (5) defines the phonon radiant intensity operator

M¼ 1

4p

ðxlimit

0

X
p

vg�hxD xð Þdx (5)

and can be applied to a phonon frequency distribution to yield

phonon radiant intensity Iðr; X̂Þ which has units of W �m�2 � sr�1.
The phonon frequency distribution is multiplied by vg�hxDðxÞ,
summed over all phonon branches and polarizations and inte-
grated over all possible frequencies (limited by the vibrational fre-
quency of the medium). Here, �h is the reduced Planck’s constant,
and DðxÞ is the phonon density of states.

Operating on Eq. (4) withM yields

KX � $Iðr;XÞ ¼ I0ðr;XÞ � Iðr;XÞ (6)

Equation (6) is the equation of phonon radiative transfer (EPRT)
[13]. The allure of the gray phonon EPRT is that the consequences
of ballistic transport between geometric scattering features are
determined explicitly but the entirety of the local intrinsic and
extrinsic scattering physics is lumped into a single parameter that
may be obtained empirically, from first principles, or some hybrid
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mixture of both. The next level of approximation is to model
transport explicitly including the spectrum of participating phonon
frequencies.

The central limitation of the gray approach is its inability to
model transport in anisotropic materials or across strongly fre-
quency selective boundaries. Further refinement includes model-
ing frequency-dependent transport across the phonon spectrum,
but to still treat collision terms through the single relaxation
approximation. From the point of view of our efficient SAAF
solution method, the two approaches are numerically identical
with independent equations coupled only through a single integral
term. For simplicity of demonstrating the SAAF approach, we
limit the scope of this work to the gray phonon model. While we
have chosen to demonstrate the effectiveness and efficiency of our
numerical approach in the context of frequency-independent
transport, the extension to the solution of the frequency-dependent
BTE with the relaxation time approximation is trivial since fre-
quency appears as a parameter in the equation, i.e., the solution in
each frequency group is decoupled from all other groups.

2.2 Self-Adjoint Form of the Phonon BTE. Morel and
McGhee [8] outline an algebraic technique for the derivation of
the self-adjoint form of the neutron transport equation. From a
computational perspective, the SAAF formulation is advanta-
geous, since the full angular flux becomes the unknown. Using
reflecting boundary conditions becomes easier with the availabil-
ity of the full angular flux, as the incoming and outgoing direc-
tions are coupled in the same manner as the first-order form of the
transport equation. Through the application of a CFEM spatial
discretization, the matrices are symmetric positive definite, which
allows for the use of solution techniques such as the precondi-
tioned Krylov family of solvers [10]. The MOOSE framework
uses CFEM as a spatial discretization and by default employs
Jacobian-free Newton Krylov [14] with preconditioning as a non-
linear iterative solution method.

Through a straightforward algebraic technique, the phonon
BTE may be manipulated into the SAAF formulation. Solving

Eq. (6) for Iðr; X̂Þ yields

Iðr;XÞ ¼ I0ðr;XÞ � KX � $Iðr;XÞ (7)

Substituting Eq. (7) back into Eq. (6), distributing and collecting
like terms gives the SAAF form of the EPRT. The self-adjoint
component of Eq. (8) is the second term, which contains a
second-order operator and is symmetric positive definite

�X � $ KX � $I r;Xð Þ½ � þ 1

K
I r;Xð Þ

¼ �X � $I0 r;Xð Þ þ 1

K
I0 r;Xð Þ

(8)

From Eq. (8), the change in the phonon intensity at a point has
two contributions: a streaming term from the spatial variation in
intensity, and a collision term due to the deviation of the radiance
from the equilibrium phonon radiance I0ðrÞ. Due to the implica-
tion of the single mode relaxation time approximation, the phonon
radiative equilibrium intensity will be defined with a condition of
zero heat generation, $ � q ¼ 0. This suggests that a phonon radia-
tive equilibrium could exist at all possible frequencies and pro-
vides some justification for the gray media formulation [13].

We employ two forms of boundary condition in this work: radi-
ant emitting boundaries and reflecting boundaries. The angular
phonon radiance at an emissive boundary may be defined as

Ib r;Xð Þ ¼ CvvgTb

4p
(9)

where Tb is a constant driving boundary temperature. For reflect-
ing conditions, outgoing angular phonon radiance is defined as the

reflection of the incoming angular phonon radiance, merely under-
going a directional change, i.e., Iðr;XÞ ¼ Iðr;X0Þ where we map
X to X0.

The angular variable X is discretized via the discrete ordinates
method, sometimes referred to as the “SN method.” The transport
equation becomes a set of N equations for the radiant intensity in
each discrete angle. Solutions to the EPRT generate angular pho-
non radiative intensity, and Rattlesnake employs level-symmetric
quadrature to numerically integrate this quantity over solid
angle, to obtain “moments” of the radiance. The SN method has
advantages in heterogeneous media over the spherical harmonics
method ðPNÞ, in that the PN angular moments are tightly coupled,
and their solution requires more computational resources [15].
The recent application of a hybrid SN � PN scheme to discretize
the angular variable in the frequency-dependent phonon BTE has
been shown to exhibit slow convergence in homogeneous silicon
[16] which suggests that the PN angular discretization approach
may not be optimal for this type of problem.

The discrete ordinates SAAF transport equation has the feature
that in each quadrature direction, a linear system of equations aris-
ing from the spatial discretization of an elliptic operator is solved
for the angular intensity. This means that software for solving the
diffusion approximation to transport can be readily converted to
solve the transport equation. The treatment of voids and certain
boundary conditions require special care, however. In contrast,
the solution of the first-order form of the transport equation
involves transport “sweeps” [15], where incident intensities from
the problem boundary, and interior sources along the way, are
propagated through the spatial mesh along the direction of travel
to the exiting mesh boundary. The ordering of this mesh sweep is
angle and problem dependent, and in multiple dimensions cyclic
graphs are possible. Developing sweep algorithms that scale to
large numbers of processors is an active research area, whereas
efficient parallel solvers for elliptic equations are much more
mature.

The zeroth angular moment of phonon radiance IðrÞ is propor-
tional to temperature, phonon speed, and volumetric specific heat
capacity

ð
4p

I r;Xð ÞdX ¼ CvvgT

4p
(10)

The first angular moment is the heat flux

qðrÞ ¼
ð

4p
Iðr;XÞX dX (11)

Other researchers have taken different approaches to computing
heat flux, incorporating quantities obtained through MD simu-
lations (phonon group velocity, wave vectors, and angular
frequencies [17–19]).

We compute an effective thermal conductivity by taking the
ratio of the average heat flux to the end-to-end temperature gradi-
ent (which includes effects at the boundaries) in the system

hjeff;zi ¼

ð
ez � q rð Þd3rð

ez � $T rð Þd3r
(12)

Though heat flux and temperature gradient are computed over the
entire domain, the dimension of interest is one where a tempera-
ture gradient is applied. This methodology is used in MD simula-
tions and is repeated here.

2.3 A Test Problem. To evaluate the effectiveness of Rattle-
snake as a deterministic transport engine, we compared our
numerical solutions of temperature and thermal conductivity in
room temperature, homogeneous silicon to the work of Yilbas and
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Bin Mansoor, who performed deterministic phonon transport sim-
ulations in silicon under equivalent conditions [20]. They used a
forward and backward finite difference discretization scheme to
solve the BTE for phonons.

Yilbas and Bin Mansoor modeled a thin film of silicon, a
common configuration which is used in many phonon transport
simulations (with both deterministic and Monte Carlo methodolo-
gies) as a benchmark problem. Material properties of room tem-
perature silicon are well known, and transport behavior at the
nanoscale has been studied [13]. Material properties for this
model were obtained from the open literature [13,21], and are
listed in Table 1.

We construct a finite element mesh for a cube of silicon with
side lengths of 3K (equivalent to 3 acoustic lengths) using CUBIT
[22] with both a coarse and fine mesh of 1000 and 12,000 hexahe-
dral elements, respectively. We apply a temperature difference of
1 K to the yz planar boundaries to simulate phonon emission sour-
ces and placed reflecting boundary conditions on the remaining
planes. We define the nondimensional temperature H as

H ¼ T xð Þ � TR

TL � TR

(13)

We use the generalized minimum residual [23] method precon-
ditioned with algebraic multigrid [24] to solve the linear system,
with an iterative convergence criteria of � ¼ 10�6, and an S8 angu-
lar quadrature. Computation times for coarse and fine mesh cases
were approximately 8 and 57 s each. Simulations were performed
on a single core 2.8 GHz Intel i7 CPU with 16 GB RAM. The
coarse and fine mesh solutions are within 10�5 of each other; for
simulations of homogeneous media, it may be appropriate to use a
more coarse spatial mesh to decrease computation time. The
behavior of the nondimensional temperature solution for coarse
and fine mesh cases obtained with Rattlesnake agree well with
those from Yilbas and Mansoor, shown in Fig. 1. The temperature
profile has a slight curvature, which is influenced by spatial

discretization. Improperly scaled finite elements do not produce
the desired solution behavior. As the acoustic thickness increases,
phonon scattering regimes shift from ballistic to diffuse. In an
acoustically thin medium, where L � K, phonons leaving a colder
boundary are in the ballistic scattering regime, and propagate far
across the medium to reach the hotter boundary causing the mate-
rial temperature to be smaller than that associated with the pre-
scribed incident intensity. In an acoustically thick medium, where
phonons are in the diffuse scattering regime, this effect is signifi-
cantly diminished. These are boundary scattering effects and are
well characterized in simulations of phonon transport [13,20].

3 Uranium Dioxide With Xenon Bubble

Du et al. [7] investigated the effects of xenon presence on ther-
mal conductivity of UO2. MD methods were used to simulate the
effect of various concentrations and geometric configurations of
xenon in the UO2 lattice for a range of temperatures. They con-
cluded that randomly dispersed xenon in the fuel matrix has a
more significant impact on thermal conductivity than quantized
xenon bubbles. At higher temperatures, phonon–phonon scattering
from normal and Umklapp processes becomes a main contributor
to the suppression of thermal conductivity, and heat transport is
locally disrupted at the xenon defect. The phonon mean free path
ðKÞ in UO2 becomes shorter at high temperature and diffuse scat-
tering dominates. Xenon concentration was limited to about 1% of
volume in the simulations.

We model a selected problem from Du et al., computing tem-
perature, heat flux, and thermal conductivity in a cell of UO2 with
a bubble of xenon in the center, in the absence of grain bounda-
ries. The behavior of xenon in a UO2 lattice at high temperature
and pressures has been reported to vary widely, and available
experimental data are minimal. Computational studies have been
performed to investigate expected temperatures and pressures of
xenon using various methodologies which drew varying conclu-
sions [25–27]. We performed MD simulations to determine the
properties of xenon at specific pressure and temperatures; these
data are used to compute K in the bubble. Bates [28] performed
thermal conductivity measurements on stoichiometric, unirradi-
ated UO2 for a large array of temperatures. We extract K from
measured thermal conductivity in the Bates study, and perform
simulations using the same bubble geometry to determine the
impact of xenon on j using values of K from Bates. We compare
these results to the bulk j of pristine UO2 measured by Bates and
to j computed using parameters from Du et al.

The role of thermal boundary resistance at the UO2–Xe inter-
face is investigated, as incoming delocalized waves may reflect
diffusely or specularly off the xenon bubble and have a significant
effect on the local thermal conductivity. We introduce the diffuse
mismatch model (DMM) and present a method to characterize
thermal boundary resistance at heterogeneous defects in three-
dimensional (3D).

3.1 Problem Description. We use Rattlesnake to simulate
phonon transport in a cell of UO2 with a xenon bubble in the cell
center and no grain boundaries. The spatial domain D is a rectan-
gular cell, 25 nm along the z-axis with a cross section of
3.8 nm� 3.8 nm, consistent with the geometry used by Du et al.
The xenon bubble has a radius of 1 nm and accounts for approxi-
mately 1% of the total volume. The finite element geometry is
constructed with CUBIT, an unstructured mesh consisting of
100,689 tetrahedral elements (Fig. 2). The linear system is solved
with the algebraic multigrid-preconditioned generalized minimum
residual method with convergence criteria of � ¼ 10�6. We per-
formed simulations with an angular quadrature order of S24, a
large amount of ordinates helps to mitigate ray effects [29], which
can occur in deterministic phonon transport simulations.

Du et al. reported j in UO2 with Xe at 300 K, 800 K, and
1500 K. Where possible, we replicate their simulation conditions
and report dimensionless temperature, heat flux, and thermal

Table 1 Silicon material data

Parameter Value

Cv ðJ �m�3 � K�1Þ 1:653� 106

vg ðm � s�1Þ 8430
K ðmÞ 33:9� 10�9

TL ðKÞ 301
TR ðKÞ 300

Fig. 1 Comparison to Ref. [20] for silicon test problem. Coarse
and fine meshes give nearly identical solutions.
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conductivity. We extract K from values of thermal conductivity
for unirradiated UO2 as documented by Du et al. In each simula-
tion, a 1 K temperature difference is applied along the z-axis. We
use the same mesh to perform additional simulations for different
values of temperature using K extracted from experimental values
of thermal conductivity measured by Bates [28]. Simulations
using the mean free path from Bates are performed independently
of the Du et al. simulations, in order to gain insight into the effect
K has on overall heat flux, temperature gradient, and thermal
conductivity.

3.2 Material Properties. The only material property entering
into the gray BTE in Eq. (8) is the phonon mean free path, K, and
so we need to determine these for UO2 and Xe. However, it is also
necessary to determine each material’s phonon radiance, I0ðTÞ, as
a function of temperature in order to impose the correct scalar flux
at the external boundaries, and to set the transmission coefficients
at the internal boundary.

To set the effective mean free path for the gray phonons in both
the UO2 and Xe we use the standard kinetic equation for thermal
conductivity [12]

j ¼ 1

3
CvvgK (14)

For the UO2, vg and Cv of acoustic modes are computed from first
principles calculations, and then K is chosen so as to reproduce
the experimentally measured values of j in unirradiated UO2 [28].
The calculation of vg and Cv in UO2 is described in detail in Sec.
3.2.1. For Xe, the j, vg, and Cv are computed from classical
molecular dynamics simulations, and similarly used to infer K in
the Xe.

The effective group velocity and effective mean free path of the
gray phonons were assumed to be isotropic in both the UO2 and
the Xe. In order to understand the degree to which transport is
ballistic in either region we consider the acoustic thickness, f, in
each domain. This is the domain size scaled by the material’s
effective phonon mean free path. Acoustic thickness of UO2 is the
ratio fUO2

¼ DUO2;z=KUO2
, where DUO2 ;z is the distance between

the hot and cold sides of the UO2 cell. Similarly, the acoustic
thickness of the Xe, fXe ¼ DXe=KXe, describes the diameter of the
bubble relative to the effective (gray) phonon mean free path in
Xe; acoustic data and mean free path for simulations using values
from Du et al. are contained in Table 2.

The transport properties of Xe are strongly tied to the Xe pres-
sure, which in turn is set by the surface tension of the UO2/Xe
interface and the bubble size. In a 2 nm diameter bubble of Xe in
UO2, the pressure is estimated to be between 2 and 5 GPa, and so
in this work, the Xe pressure was assumed to be 3 GPa at all tem-
peratures studied. At this pressure, Xe is either solid or liquid

across the temperature range that we study here, and so the use of
a gray phonon model of transport is justified in the Xe. Across the
range of temperatures we study, we hold the size of the bubble
fixed (with radius of 1 nm), meaning that as the temperature is
changed the number of Xe atoms in the bubble is not constant.
This means that our sweep of simulations does not represent the
change in thermal conductivity due to heating UO2 containing Xe
bubbles from 300 to 1500 K. However, it does provide us insight
into the ballistic versus diffusive contributions to thermal resist-
ance from 1 nm bubbles at different temperatures.

3.2.1 UO2 Calculations. For UO2, the effective group veloc-
ity, volumetric specific heat, and radiance of gray phonons was
computed by averaging the properties of the three acoustic
branches of the phonon dispersion over the entire Brillouin zone.
The phonon dispersion was computed on a 50� 50� 50 q-point
grid using Phonopy [30] based on the structure symmetry of UO2

(Fd-3m) with interatomic force constants computed from first
principles. The UO2 simulations were executed with the plane-
wave basis projector augmented wave method within the density
functional theory framework as implemented in the Vienna ab ini-
tio simulation package [31–33]. A plane-wave energy cutoff of
600 eV was employed in the local density approximation [34],
with a 6� 6� 6 Monkhorst-Pack k-point grid. A 2� 2� 2 super-
cell of the UO2 unit cell (with 4 O and 8 U atoms) was used for
all calculations, including calculation of the force constants. The
perfect super-cell was found to be relaxed to a 1� 10�3 eV=Å
ionic tolerance and a 1� 10�5 eV electronic tolerance. UO2 is
antiferromagnetic, but there exist ferromagnetic solutions to the
Kohn–Sham equation, and Vienna ab initio simulation package
can get trapped into a ferromagnetic state. To prevent this from
happening, the magnetic moment tag was selected to ensure that
alternating uranium atoms in the structure had opposing spins, and
the spin of the oxygen atoms was set to zero. We further used a
Hubbard parameter, U, of 4.50 eV, and a Hund’s exchange param-
eter, J, of 0.50 eV. The resulting electronic density of states (Fig.
3) agrees with that of Wang et al. [35]. The phonon dispersion
(Fig. 4), also in good agreement with that obtained in the same
reference [35].

The effective transport properties of the gray phonons in UO2

were computed from the following expressions:

Table 2 Mean free path data for pristine UO2 [7] and Xe (this
work)

TðKÞ KUO2
ðnmÞ KXe ðnmÞ fUO2

fXe

300 31.9 1.10 0.78 1.82
800 14.3 0.77 1.75 2.6
1500 7.6 0.8 3.3 2.5

Fig. 3 Total and partial (for the orbitals listed in the legend)
electronic density of states for UO2 with U correction

Fig. 2 A 25 nm cell of UO2 with xenon bubble; 100,379 tetrago-
nal mesh elements
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I0 Tð Þ ¼ 1

4p

X3

p¼1

ð
BZ

dk3 jmg p;kð Þj
2p3a3

�hx p;kð ÞnBE x p; kð Þ;Tð Þ (15)

where nBEðx;TÞ is the Bose–Einstein distribution, a is the lattice
parameter of UO2, and p is the phonon polarization. The volumet-
ric specific heat capacity is computed using a similar integral

Cv ¼
1

2p3a3

X3

p¼1

ð
BZ

dk3�hx p;kð Þ @nBE x p; kð Þ; Tð Þ
@T

(16)

Using these integrated quantities, we can define an effective group
velocity for gray phonons as

vg Tð Þ ¼ 4pI0 Tð Þ
CvT

(17)

This velocity and the heat capacity are only very weakly tempera-
ture dependent over the temperature range of interest, and thus,
we approximate it by their average values of 1764 m � s�1 and
1:007� 106 J �m�3 � K�1, respectively. Note that this effective
velocity of the gray phonon bath is approximately 0.45 of the
mean speed of sound obtained from the same UO2 calculations. It
is in effect the average group velocity of acoustic phonon modes
weighted by the thermal energy in the mode. Similarly, the effec-
tive specific heat is not the true specific heat of UO2, but only the
contribution to its specific heat from the acoustic modes and the
computed value for this is is close to the high temperature limit
for the acoustic modes of 12kB=a3.

3.2.2 Xenon Calculations. The thermal conductivity and
transport properties of xenon under high pressure were computed
from classical molecular dynamics simulations performed using
the large-scale atomic/molecular massively parallel simulator
package [36]. Interatomic forces were modeled using a
Lennard–Jones potential with large-scale atomic/molecular
massively parallel simulator parameters � ¼ 0:00425 eV and
r ¼ 4:29 Å, with all interactions truncated after 20 Å.

Simulated systems of 10,000 Xe atoms under 3 GPa were pre-
pared at a series of temperatures from 300 to 1700 K. This was
achieved by equilibrating the system over a 500 ps simulation in
the constant number of atoms, pressure, temperature ensemble
before turning of the thermostat and barostat and simulating for a
further 50 ps in the microcanonical ensemble. In these simula-
tions, it was found that the Xe was solid at temperatures below
�600 K, and above that, remains liquid up to 1700 K. Once the
systems were prepared, the system was simulated in for a further
1 ns in the microcanonical (NVE) ensemble, during which the

thermal conductivity was computed using the Green–Kubo
method [37]. The Green–Kubo method is founded on the fluctua-
tion dissipation theorem to determine the thermal conductivity of
a system from the lifetime of its natural thermal fluctuations dur-
ing a simulation of the system at equilibrium. A minimum of six
simulations were performed using different random starting con-
figurations and the results averaged to obtain each thermal con-
ductivity datum.

For vg of Xe, we use the speed of sound computed at each tem-
perature from the Xe’s density and isentropic compressibility. The
isentropic compressibility was computed by simulating adiabatic
expansion. At each temperature, the system was first cycled in an
NVE ensemble after which system dimensions were slightly
increased, followed by another NVE cycling step. The compressi-
bility was calculated from the differences in system volume and
pressure before and after expansion. This set of simulations also
served as the source of density data. The Xe density was also used
to compute Xe’s volumetric specific heat capacity at each
temperature.

The computational approach for determining both thermal con-
ductivity and speed of sound were validated by computing the
pressures at slightly lower pressures for which there exists experi-
mental data [38] and finding the properties to be in reasonable
agreement. The computed density, thermal conductivity, vg, and
KXe are plotted in Fig. 5, and clearly show a transition in proper-
ties between the solid and liquid Xe.

3.3 Thermal Boundary Resistance. We must consider the
resistive effect at material interfaces: the phenomenon of TBR,
the ratio of a temperature discontinuity at an interface to the heat
flux across that interface, due to a material difference at the junc-
tion. TBR is an extraordinarily subtle phenomenon and has some
consideration in other deterministic phonon transport studies
[39,40]. However, it is very important to consider in simulating
phonon transport, and has been characterized in a number of other
MD and Monte Carlo studies [41–43].

The physics of TBR are important to phonon transport because
of how phonons behave when they encounter a physical interface
between two adjacent materials. At this junction, phonons become
subject to a phenomenon which manifests as a transmissive and
resistive effect for phonons penetrating an interface into another
material. This physical effect occurs as the intrinsic properties of
material change. Phonons define the internal energy of a material;
when they cross a boundary from one material into the next, the
change in their contribution to internal energy as well as change
in their velocity must be considered.

We develop the DMM [44] in a deterministic framework for
3D general geometries. We assume all phonons are diffusely scat-
tered at the interface, with outgoing radiance emitted isotropi-
cally, and that scattering destroys the correlation between the
wavevectors of incident and outgoing phonons; the probability
that a phonon will scatter into a given side of the interface is inde-
pendent of the phonon origin. Enforcing these conditions makes
the probability of scattering into a given side proportional to the
phonon density of states on that side, additionally constrained by
the principle of detailed balance.

We can write a balance equation for the flow of phonons
between two materials

Uavg;aTa!b ¼ Ubvg;bTb!a (18)

where Ua; Ub; vg;a; vg;b are internal energies and phonon speeds
of materials a and b, respectively. We define Ta!b as the probabil-
ity of transmission from material a into material b, and Tb!a as
the probability of transmission from material b into material a. It
follows that

Ta!b þ Tb!a ¼ 1 (19)

to uphold conservation of energy and detailed balance. We solve
for the transmission probabilities, which are

Fig. 4 Phonon dispersion relations for UO2
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Ta!b ¼
Ubvg;b

Uavg;a þ Ubvg;b
(20)

Tb!a ¼
Uavg;a

Uavg;a þ Ubvg;b
(21)

it follows that the probabilities of reflectance are defined as
Ra!a ¼ 1� Ta!b and Rb!b ¼ 1� Tb!a, where Ra!a is the
reflectance of phonons in material a incident on the interface back
into material a, and Rb!b is the reflectance of phonons in material
b incident on the interface back into material b.

We take the first-order form of the steady-state, frequency-
independent phonon transport equation to derive balance relations
for phonons incident on and leaving a spatially discontinuous
interface

X � $I r;Xð Þ þ 1

K
I r;Xð Þ ¼ 1

K
I0 rð Þ (22)

In Fig. 6, we denote “�” as the upwind radiant flux and “þ” as
the downwind radiance. The scalar radiance is identified by
I6
a;bðrintÞ. We must solve for the upwind and downwind scalar

radiance at the interface rint to characterize the effects of TBR in
our transport simulation. In the transport equation, we solve for
the angular radiance, which is integrated over solid angle to solve
for scalar radiance.

At the location rint with its unit vector normal to the interface
which points from material a to material b denoted as na!b, we
can write conservation equations which define the flow of pho-
nons immediately at both sides of the interface. On the b side of
the interface, phonons which flow away from the interface into
material b come from two sources: they are transmitted through
the interface from material a, and reflected from those incident on
the surface from the b side.

On the b side of the interface, each angular radiance corre-
sponding to a particular ordinate Xm is assigned the new diffuse
flux, an angular redistribution of the transmitted portion of pho-
nons from side a and reflected phonons from side b. This diffuse
flux is now the effective source of phonons flowing away from the
interface into material b. An analogous procedure holds for pho-
nons flowing into material a. We identify the new flux with its
contributions from a and b side phonons as Ia;bðr6

intÞ. The conser-
vation equation expressing the flow of phonons away from the
interface into material a is then developed as

ð
na!b �X̂>0

Iðrþint;XÞjna!b �XjdX

¼ IbðrþintÞ
ð

na!b�X>0

jna!b �XjdX

¼ Ta!b

ð
na!b�X>0

Iðr�int;XÞjna!b �XjdX

þRb!b

ð
na!b �X<0

Iðrþint;XÞjna!b �XjdX (23)

such that we solve for the downwind diffuse radiance flowing into
material b from material a

Ib rþint

� �
¼ 1

Ð
na!b�X>0

����na!b �X
����dX

�
�

Ta!b

ð
na!b�X>0

I r�int;Xð Þjna!b �XjdX

þRb!b

ð
na!b�X<0

I rþint;X
� �

jna!b �XjdX

�
(24)

A similar expression describes the upwind diffuse radiance of pho-
nons flowing from material b into material a. These new expres-
sions for the scalar radiance are now the isotropic emission sources
on either side of the interface and are distributed at each direction
of outgoing angular radiance at the interface Ia;bðr6

int;XÞ.
The effective implementation of this model allows for the

description of localized heat flux and temperature around defects
in heterogeneous structures. The DMM is a relatively crude
descriptor of TBR, an improved model of interface physics would
necessitate the inclusion of anharmonic effects, and would
also need to be adaptive to phonon frequency selection over the
interface itself [45]. We computed transmission and reflection
coefficients for UO2 and Xe from the material properties deter-
mined in Secs. 3.2.1 and 3.2.2; these are shown in Fig. 7. At all
temperatures, the phonon radiance is approximately two orders of
magnitude larger in the UO2 than in the Xe; the boundary is
highly resistive to phonons flowing from UO2 into the Xe bubble
with approximately 40% transmitted at 300 K, decreasing sharply
as temperature increases.

3.4 Results and Discussion. We report simulated heat flux
and thermal conductivity for an array of temperatures with two
sets of values for KUO2

; one generated from the MD results of Du
et al. (denoted KDu), the other extracted from experimentally
measured values of j in unirradiated samples of UO2 from Bates
(denoted KBates). In both cases, we use material properties for Xe
based on MD simulations we performed, as well as the same spa-
tial mesh. We observe the effects of thermal boundary resistance
at the Xe bubble, which play a role in the amount of overall ther-
mal resistance the bubble provides. In all cases, the presence of
xenon lowers the thermal conductivity in the UO2.

Fig. 5 Xenon properties from MD simulations. Clockwise from
top left: density, thermal conductivity, mean free path, phonon
speed. Xenon experiences a phase change with increasing
temperatures.

Fig. 6 Upwind and downwind phonon radiance at a physical
interface between two materials
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Figure 8 shows all values of simulated j and the measured pris-
tine j. In the upper half of Fig. 8, we compare to Bates and follow
a similar trend showing decreased thermal conductivity with
increasing temperature. This is further affected by the presence of
the xenon bubble; j is reduced by approximately 30–55% over
the temperature range with the sharpest difference occurring at
lower temperature.

In the lower half of Fig. 8, we compare our j to that of Du
et al.; while we follow a loose trend in the shape of the curve, we
experience a large discrepancy in simulated values. We under-
predict j in simulations with and without a Xe bubble, which may
have multiple causes. Numerical results of j from this study are
compared to those of Du et al. in Table 3. Our computed group
velocity in UO2 is lower by approximately a factor of 2 compared
to Du et al.; it is no surprise that our j with Xe is also lower by
approximately the same factor. We justify this exclusively for a
gray approach in that we assume all phonons do not travel at the
speed of sound in UO2; indeed from the calculations in Sec. 3.2.1
it is clear that the group velocity is averaged, but has contributions
from phonons with varying K lumped into a single term. Some
phonon modes may be highly sensitive to frequency, and this

detail is washed out in the gray approach. This assumption may
explain some of the underestimation in the ballistic effects. In
addition, we may not be capturing some intrinsic phonon scatter-
ing, and we currently do not have anharmonicity built into the
relaxation time; there is no way to discern these effects. The relax-
ation time seff has many contributions: Umklapp processes, defect
scattering, boundary scattering, and the resonant scattering of pho-
nons. Classic MD can be used to characterize many of these proc-
esses, but MD is not able to capture certain quantum effects at
low temperatures, such as specific heat [46], and this may be a
reason for the discrepancy.

Dimensionless temperature for all simulated temperature is
shown in Fig. 9. The influence of the xenon bubble is clear, and
jumps at the interface are observed; these are more pronounced at
lower temperatures when phonon scattering is highly ballistic.
This effect results in localized negative temperature gradients,
which was also observed by Yang in Si nanowires [43], and the
gradient monotonically shifts toward zero with increasing temper-
ature. Note that while the temperature gradient becomes negative,
the net flux in this region is still positive (see Fig. 10)—heat is
apparently flowing uphill. This result is counterintuitive when
thinking of heat flow in the diffusive limit, but is entirely consist-
ent with a ballistic picture of transport in which the energy of the
phonon gas at any point contains nonlocal information.

The centerline heat flux qðrÞ shown in Fig. 10 has been
normalized to the 300 K value; qðrÞ is inversely proportional to
temperature and experiences a steady decline as temperatures
increase. As temperature increases, KUO2

decreases and diffuse
scattering becomes more prevalent, which contributes to the
reduction in heat flux. As a result of TBR, large portions of the
phonon radiance are reflected at the xenon bubble, decreasing
local qðrÞ by resisting the flow of phonons.

Heat flux in the UO2 region remains approximately constant
along the temperature gradient and changes drastically at the Xe
bubble. We observe this effect in Figs. 10 and 11, where heat flux
is severely depressed in the region local to the Xe bubble. The
presence of a single xenon bubble does not significantly impact
average qðrÞ in the domain, but it does affect the behavior of the
local heat flux. Du et al. established this by performing MD simu-
lations which include multiple Xe bubbles and Xe randomly dis-
persed in the UO2 matrix [7]. Ray effects are observed at lower
temperatures when phonon scattering is highly ballistic (slight
oscillations in qðrÞ) but vanish as scattering becomes diffuse.
With increasing temperature, the heat flux is gradually suppressed,

Fig. 7 Transmission coefficients TUO2fiXe and TXefiUO2
as func-

tions of material properties U, vg for 300–1500 K

Fig. 8 Upper plot: j computed with KBates; triangle-j with
xenon bubble; square-j from unirradiated UO2 [28]. Lower plot:
j computed with KDu; diamond-j with xenon bubble; triangle-j
with no xenon; star-j with no xenon [7]; circle-j with xenon
bubble [7]

Fig. 9 Dimensionless temperature H for all simulation temper-
atures. The presence of the xenon bubble is clear, as the gradi-
ent in the center region becomes steeper. This simulation was
conducted using KBates.
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and the effects of Xe on the local heat flux become less signifi-
cant. KUO2

decreases by approximately a factor of 3 between the
temperature extremes, and this decrease is more detrimental to
heat flux than compared to the presence of a singular bubble of
Xe. Additional Xe bubbles would have a greater negative effect
on bulk thermal conductivity.

Table 4 contains the total number of source iterations required
for convergence, and total acoustic thickness of the spatial domain
over the range of temperatures. As f increases, required iterations
decrease; this is counterintuitive as purely scattering thermal

radiation and phonon transport simulations tend to require more
iterations for convergence with increasing f. This effect is poten-
tially related to the oscillations experienced in the ballistic scatter-
ing regime, where K is on the order of the entire spatial domain
(Casimir limit).

4 Conclusions

We have presented the features of a 3D, generalized geometry
radiation transport code modified to simulate phonon transport in

Fig. 10 Heat flux along z-axis normalized to the 300 K value,
which shows the presence of the xenon bubble and its effect on
the local heat flux. Heat flux steadily decreases with increasing
temperature as phonon transport becomes gradually more dif-
fuse. This simulation was conducted using KBates.

Fig. 11 Phonon radiance (temperature) of the Xe bubble and streamlines of the heat flux in the UO2 region at 300 K. Higher
temperature phonons are incident on the right side of the bubble; the resistance encountered increases phonon scattering,
which decreases heat flux at the interface. The opposite effect occurs on the left side of the Xe bubble, where heat flux is
greater as colder phonons have decreased scattering and flow away from the bubble.

Table 3 Thermal conductivity ðW �m21 � K21Þ simulated using
KUO2

[7]

TðKÞ Pristine UO2 [7] UO2 þ Xe [7] UO2 þ Xe

300 15.97 11.64 5.3
800 7.81 6.97 3.8
1500 4.29 4.06 2.6

Table 4 Iteration details: linear iterations and acoustic thick-
ness f for simulation using KBates

TðKÞ Source its. fUO2
þ fXe

300 116 3.4
500 85 4.2
800 82 6.3
1000 76 6.8
1100 79 7.2
1200 77 7.5
1300 75 7.8
1400 75 8.2
1500 76 8.5
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a gray formulation. We have implemented the physics for thermal
boundary resistance in 3D to describe phonon transport behavior
at localized defects in the material. We have presented our deter-
ministic transport results for a simulation of a 3D domain of UO2

with a Xe impurity and compared them against MD results for
similar geometry and simulation parameters [7]. Additionally, we
use KUO2

extracted from experimentally measured pristine UO2

for the same simulation setup, and mimic the shape of the j curve
in Ref. [28] but with lower values of j due to the Xe presence.

The transport method we have presented is trivially extendable
to simulate a multifrequency phonon spectrum using input varia-
bles derived from density functional theory (DFT) simulations,
consistent with our discussion in this work (Secs. 3.2.1 and 3.2.2).
The use of deterministic methods to simulate phonon transport is
an underdeveloped aspect of the phonon transport community.
Classical molecular dynamics simulations and DFT electronic
structure calculations can provide detailed information about
material properties, dispersion relations, and thermal conductivity
but do so only at a local or nanometer scale. It is well understood
that resistive processes also arise from the mesoscale structure of
materials and these cannot be captured efficiently from atomistic
calculations (a point that is reinforced by the results in this work).

By coupling Rattlesnake to MD and DFT methodologies, we
show a way to bridge the gap between the atomistic and engineer-
ing scales. This multiscale method provides a framework for rapid
prediction of the engineering-scale thermal conductivity in materi-
als with evolving microstructures. Such a tool is particularly
imperative for modeling nuclear fuels and their surrounding struc-
tural materials in which the thermal conductivity of the materials
is a central component of the system performance.
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