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INTRODUCTION

The nature of computational simulations requires the in-
clusion of an uncertainty analysis, as we have limited knowl-
edge of all physically determined input parameters for a com-
putationally simulated problem. We rely on uncertainty quan-
tification (UQ) to characterize our confidence in the outcomes.
Quantifying uncertainty can provide a basis for certifications
in high-consequence decisions, such as nuclear reactor design,
and is a fundamental component of model validation.

We employ a previously developed method of uncertainty
quantification, polynomial chaos expansion with stochastic
collocation (PCE-SC) [1], applied to deterministic phonon
transport simulations. In these simulations, we use the neutron
transport code Rattlesnake [2], which solves the Self-Adjoint
Angular Flux (SAAF) formulation of the transport equation
with a continuous finite element (CFEM) spatial discretization
and discrete ordinates, spherical harmonics angular discretiza-
tions. Rattlesnake was developed in the multi-physics object
oriented simulation environment (MOOSE) framework [3].
We have previously shown Rattlesnake to be effective in simu-
lating phonon transport [4].

We aim to provide a deterministic phonon transport frame-
work for heterogeneous nuclear fuel with fission product de-
fects to predict thermal conductivity (κ) [5]. A first principles,
physics-based calculation of thermal conductivity must in-
volve factors such as the microstructure of nuclear fuel, which
constantly changes during the fission process through the for-
mation of isotopic decay products. Heat transport in oxide
nuclear fuels is dominated by phonon transport. Impurities
in the bulk material influence the transport of energy at the
fundamental level, altering the scattering behavior of phonons
and electrons.

Conventionally, heat transport follows classical physics
based on the heat equation derived from Fourier’s law

q = −κ∇T, (1)

where q is heat flux, κ is thermal conductivity and ∇T is a
temperature gradient. However, Fourier’s law is a macroscopic
empirical law in which the thermal conductivity κ does not
have a mechanistic connection to the underpinning heat trans-
port processes. Thermal conductivity of a material depends
both on the material’s intrinsic ability to transport heat and
a variety of resistive effects caused by defects in the mate-
rial. Thus ab initio prediction of the macroscopic conductivity
— the property of interest for safe reactor operation — re-
quires simulating detailed processes of heat transport, and
then determining the effective thermal conductivity of the sim-
ulated material from the resulting heat flux under the imposed
temperature difference. The thermal conductivity of a bulk,

homogeneous, dielectric material can be well estimated by the
mechanistically derived expression [6]:

κbulk =
1
3

Cvvgλ, (2)

where Cv, vg, and λ are the volumetric specific heat, phonon
speed, and phonon mean free path, respectively.

The importance of microstructure and boundary scatter-
ing is illustrated by Fig. 1, which shows the reduction in the
effective thermal conductivity across a thin slab of material
(Fig. 2) as compared to its bulk value. In these problems the
relevant parameter is the material’s acoustic thickness, its char-
acteristic distance L relative to the phonon mean free path
λ [7]. In Eq. (2) the largest source of uncertainty is λ. While
propagating uncertainty in λ to uncertainty in κ through Eq. (2)
is trivial, systems with extrinsic scattering require more so-
phisticated approaches. At the microscopic level, uncertainty
in λ changes both a material’s intrinsic thermal conductivity
and its acoustic thickness.
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Fig. 1. Reduction in the thermal conductivity across a thin
slab of material as compared to bulk.

Our goal is to propagate the uncertainty in λ through the
determinstic transport computation of κ. Because there are a
small number of uncertain input quantities, we use the method
of polynomial chaos expansion (PCE), which expresses so-
lutions in the form of spectral expansions of an uncertain
variable [1]. This approach combines both intrusive and non-
intrusive methods of uncertainty propagation techniques and
results in a unique formulation which is very effective and
efficient for problems with few uncertain parameters [8, 9].



We use PCE-SC to measure propagation of uncertainty in a
3-D phonon transport problem of homogeneous silicon, to
compute the mean and variance in temperature, heat flux and
thermal conductivity.

METHODS

Brute force Monte Carlo can be used to calculate statisti-
cal moments of various relevant quantities from realizations
of statistical distributions of input parameters, though it can
be prohibitively slow because of the Central Limit Theorem.
PCE-SC approximates integrals over the probability distribu-
tions using deterministic quadrature, and has been shown to be
very computationally efficient for small numbers of uncertain
input parameters.

We solve the steady-state Boltzmann transport equation
(BTE) to determine the radiant intensity of heat-carrying
phonons and from the moments of the intensity, determine the
effective thermal conductivity. The governing equation is the
BTE for gray phonons in the SAAF formulation (which we
have developed previously [5]) using the single mode relax-
ation time approximation [6], given by Eq. (3):

−λΩ̂·∇
[
λΩ̂ · ∇I

(
r, Ω̂

)]
+I

(
r, Ω̂

)
= −λΩ̂·∇I0 (r)+I0 (r) (3)

Here, I(r, Ω̂) is phonon radiant intensity at position r (x, y, z)
traveling in direction Ω̂. The radiance I has units of W ·m−2 ·

sr−1. In this transport problem, the change in the phonon
intensity at a point has two contributions: a streaming term
from the spatial variation in intensity, and a collision term due
to the deviation of the radiance from the equilibrium phonon
radiance I0 (r). The mean free path λ is the product of phonon
speed vg and relaxation time τ and has units of length (m).

The zeroth angular moment of phonon radiance I is pro-
portional to temperature, phonon speed, and volumetric spe-
cific heat capacity:∫

4π

I
(
r, Ω̂

)
dΩ =

CvvgT
4π

. (4)

The first angular moment is the heat flux:

q (r) =

∫
4π

I
(
r, Ω̂

)
Ω̂ dΩ (5)

In a cube of silicon with side length 3λ (Fig. 2), we
simulate a 1 K temperature gradient along the x-axis, with
boundary temperatures of TR = 301 K, TL = 300 K, Cv =
1.65 · 106 J ·m−3 ·K−1, vg = 8430 m · s−1. Simulations use the
generalized minimal residual (GMRES) method [10] to solve
the linear system, with solver convergence criteria of ε = 10−6.
The finite element mesh is constructed in CUBIT and is com-
posed of 103 elements, and the simulation has ~104 degrees
of freedom. The run-time is approximately 7 seconds on a
2.8 GHz Intel i7 CPU with 16 GB RAM. The reported mean
free path for phonons in silicon at room temperature (300 K)
varies widely [11, 12]. Reported values of λ are averaged val-
ues that coalesce the scattering behavior of a broad spectrum
of phonon wavelengths and their interactions with different

Fig. 2. Mesh of silicon domain with side length 3λ.

types of extrinsic defects. The volumetric specific heat Cv and
phonon speed vg can be determined with good accuracy from
first principles, while λ is often obtained as a fitting parameter
needed to make Eq. (2) match some empirically determined
value of κ. The large variation in measured κ means that ap-
plying an empirically obtained λ from one problem to another
is accompanied by a large degree of uncertainty, justifying the
need for UQ for these types of problems.

In this study, we have assigned a relative uncertainty on
λ of 33%

(
1
3

)
based on literature values of mean free path in

silicon [11, 12], and so choose its range to be λ ± λ/3. We
assume that the statistical distribution for λ is uniform, such
that

λ (Ξ) = λ̄ +
λ̄

3
Ξ, Ξ ∈ (−1, 1) , (6)

The uniform distribution evaluated at the ordinates of an S 8
Gauss-Legendre quadrature is shown in Fig. 3. [Other statisti-
cal distributions are possible in the PCE-SE approach.]

In PCE-SC we express the randomness introduced in the
intensity (and its angular moments) as an expansion in or-
thogonal polynomials. The uniform statistical distribution is
most efficiently treated with Legendre polynomials and Gauss
quadrature. Each quantity of interest in the transport simula-
tion has a statistical distribution and is expanded in terms of a
finite series of Legendre polynomials in the random variable.
The expansion for temperature, for example, becomes

T (Ξ) ≈
N∑
`=0

T`P` (Ξ) , (7)

where P` is the Legendre polynomial of order ` and T` is the
expansion coefficient. For this work, Legendre polynomial
order was set to N = 8, with quadrature order set to M =
8. An S8 Gauss-Legendre quadrature will exactly integrate
polynomials up to order 7.

The BTE is solved for each of the discrete values of λ
associated with the chosen quadrature, and numerical inte-
grals are performed to estimate the statistical moments of the
temperature (zeroth angular moment of I) via

T` (r) ≈
2` + 1

2

N∑
`=0

M∑
m=1

wmT` (r,Ξm) P` (Ξm) . (8)
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Fig. 3. The continuous (λ (Ξ)) statistical mean free path dis-
tribution and the values of λ corresponding to the S8 Gauss
quadrature (λ (Ξm)). λ̄ is the value of the phonon mean free
path [13].

[An analogous equation exists for the heat flux q.]
Once the moments have been obtained through Eq. (8),

the mean and variance may be computed. The mean tem-
perature at each spatial location is equal to zeroth Legendre
moment of the temperature distribution:

〈T (r)〉 = T0 (r) . (9)

The variance in temperature can be computed from the remain-
ing Legendre moments:

σ2
T (r) =

N∑
`=1

1
2` + 1

T 2
` (r) (10)

From the statistical mean and variance of q (r) and the tem-
perature gradient across the axis of transport, we are able to
compute a volume-averaged thermal conductivity, 〈κeff,x〉, as

〈κeff,x〉 = −

∫
d3r ex · q(r)

∆T/L
. (11)

Values for all output quantities are reported in Table I.

TABLE I. Mean and standard deviation for 〈q〉, 〈T 〉, 〈κeff,x〉

〈qx〉
(

W
m2

)
〈Tx〉 (K) 〈κeff,x〉

(
W

m·K

)
−1.05 ± 0.14 300.5 ± 0.01 107.5 ± 14.2

RESULTS AND ANALYSIS

Temperature is calculated at each spatial location xi, and
is a function of Cv, vg and I. Figure 4 contains the spatial
distribution of temperature for the mean free path associated
with each of the quadrature points.
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Fig. 4. Spatial temperature distributions for each λ computed
from the chosen quadrature.

Figure 5 shows the mean and standard deviation of tem-
perature at each location xi along the domain. The uncertainty
in the center goes to zero due to symmetry of the problem. σT
is highest at the boundaries, and is a function of the acoustic
thickness of the problem. As the acoustic thickness increases,
the radiant sources at the boundaries shift from ballistic to
diffuse scattering regimes. In an acoustically thin medium,
where L ≈ λ, phonons leaving a colder boundary are in the bal-
listic scattering regime, and propagate far across the medium
to reach the hotter boundary causing the material temperature
to be smaller than that associated with the prescribed incident
intensity. In an acoustically thick medium, where phonons
are in the diffuse scattering regime, this effect is significantly
diminished. These are boundary scattering effects, and are
well characterized in simulations of phonon transport [7, 13].
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Fig. 5. Mean and standard deviation of temperature along
x-axis of silicon.

Mean values of T , q and κ over the spatial domain along
with their associated standard deviations (±max |σ|) are re-



ported in Table I. We expect 〈Tx〉 to be approximately the
midpoint average of the boundary temperatures due to the
homogeneity of the problem.

The equilibrium heat flux is constant over the spatial do-
main, however, the same boundary effects which influenced
the temperature distribution also materialize in q, which ele-
vate the values of q near the domain boundaries. This effect
may be responsible for the inflated uncertainty in q, which is
higher than expected. The uncertainty in q propagates into the
calculation of σκ

The value of 〈κeff,x〉 is in good agreement with κeff at an
acoustic thickness of 3λ, roughly 68% of the value of κbulk =
157 W ·m−1 ·K−1 given by Eq. (2). Figure 6 compares κeff.x at
many acoustic thicknesses normalized to κbulk and 〈κeff,x〉 with
its associated standard deviation. Thermal conductivity has a
strong dependence on acoustic thickness of the medium at the
nanoscale, this relationship is made clear in Fig. 6.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Si acoustic thickness
(

L
λ

)

0.4

0.5

0.6

0.7

0.8

0.9

1

S
i
re
d
u
ce
d
co
n
d
u
ct
iv
it
y
(κ

eff
,x
/κ

b
u
lk
)

κeff ,x/κbulk

〈κeff ,x〉± σκ

κbulk

Fig. 6. κeff normalized to κbulk for varying acoustic thicknesses,
〈κeff,x〉 and σκ.

CONCLUSIONS

We have shown the PCE-SC method to be effective in pro-
viding uncertainty quantification for a deterministic phonon
transport simulation. This method is accurate and efficient
for simulations with few uncertain variables. The phonon
mean free path is our uncertain variable, and this uncertainty
is projected into the solutions of the phonon transport equation
which yield 〈q〉, which in turn yields 〈κeff〉; the uncertainty in
〈κeff〉 is proportional to the uncertainty in 〈q〉. The variation in
λ influences the acoustic thickness and thermal conductivity.
We intend to broaden the application of PCE-SC to our het-
erogeneous phonon transport simulations. Parametric studies
could be performed to measure the accuracy in using different
orders for the Gaussian quadrature and chaos expansions, in
addition to performing Monte Carlo studies to show an effi-
ciency comparison. The deterministic sampling aspect of the
PCE-SC method is very useful in simulations with a small
number of uncertain parameters and is beneficial in providing

UQ analysis to deterministic phonon transport simulations.
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