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5.1 Introduction

The manner in which we use and control heat is of great importance both
technologically, and within our daily lives. Roughly 90% of the energy that we
use today has been involved in the generation to and conversion from heat (e.g.,
coal or gas power plants, combustion engines for transportation, and nuclear
energy, to name only a few). The efficiency of these processes is limited by the
control we have over the storage and transport of heat within materials. Most
practical thermal-energy systems that are involved in transport, storage, and/or
conversion operate far from their limits.
Since thermal transport is a materials phenomenon, it is useful to compare

our understanding of it with other transport properties such as the conduction
of electrons. Since the discovery of electricity, research on charge transport in
materials has pushed the extremes of electrical conductivity, which now spans
over 20 orders of magnitude. In 1947 the transistor was invented, which per-
mitted external tuning of electrical conductivity in the solid state—and forming
the foundation for information processing and beginning the digital age. The
societal impact of research in electrical conduction has been and will continue
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to be enormous. In contrast, heat transport in condensed matter has received
much less attention. For example, the thermal conductivity of current solid
materials spans only 5 orders of magnitude at room temperature and its
external tunability is limited. With the exception of the Carnot limit to heat
engines, we really do not know what limits, if any, exist regarding the funda-
mental processes of thermal energy transport and conversion, and storage.
There are currently no thermally superconducting materials, nor are any
existing materials perfect thermal insulators.
An equivalent paradigm shift in thermal transport would be the use of fre-

quency-dependent thermal properties; that is, exploiting properties of materials
that depend on the thermal energy being concentrated at specific frequencies.
Such opportunities may exist in new thermal phenomena that occur in nanoscale
materials. The aim of this chapter is to provide an overview of the methods for
simulating thermal phenomena at the nanoscale. After giving a brief overview of
some of the experimental progress that is driving this field we survey the current
computational methods highlighting their strengths, and the major challenges
that still face the simulation of heat. This is followed by two detailed case studies
in which selected methods have been used to study nanoscale thermomechanical
behaviour, showing how these tools can be used, and what insight they can give.
The examples given are in the study of dissipation in CNT resonators, and fre-
quency-dependent heat transport across weak nanoscale interfaces. The chapter
finishes with a discussion of the major challenges still facing simulation of heat,
and the outlook to new applications of thermal properties.

5.2 Examples of Recent Experimental Progress

There have been recently a number of exciting advances in our ability to control
heat flow that have primarily been achieved with the use of nanoscale systems.
Accompanying the advances in engineering thermal properties have been
breakthroughs in or ability to measure thermal transport and to characterize
thermal behaviour at this small scale. Together, these experimental develop-
ments show that we can extend the current boundaries of thermal conductance,
and they call on scientists to develop more accurate and predictive methods
for computing thermal conductance and for simulating thermomechanical
phenomena in nanoscale systems. A brief survey of the experimental advances
in nanoscale thermal properties that is motivating the need for new computa-
tional approaches is given here.

5.2.1 Increasing Thermal Conductivity

As long ago as 19411 it was recognised that the mean free path of longitudinal
acoustic phonons diverges as their frequency approaches zero.i In the absence
of internal scattering mechanisms this would mean that a material’s thermal

iAn infinitely long-wavelength mode is a quasistatic compression that must have an infinite mean
free path in order to satisfy Newton’s laws.
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conductivity would increase with the size of the material. In bulk materials
there are a plethora of defects, interfaces and other scattering mechanisms that
limit the mean free path, and make the thermal conductivity size invariant in
practice. Single-walled carbon nanotubes and graphene sheets are composed of
a single layer of atoms and are not bulk materials (one cannot distinguish
between a surface and an internal atom in a CNT). With no interfacial scat-
tering the only mechanisms for restricting the mean free path of long-wave-
length modes are anharmonic phonon interactions and isotopic effects. The
result of this is that single-walled CNTs can exhibit very large thermal con-
ductivity along their length, and that the tubes must be very long (up to 10 mm)
before k stops increasing with tube length.2–5 CNTs hold much hope for
engineering new materials with very efficient thermal conduction for uses in
thermal management; however, much of the heat transported along a CNT is
conveyed by flexural and torsional modes. These important heat-carryingmodes
only move unimpeded when the CNT is free standing; the modes are quickly
scattered if the CNT is in contact with a substrate (or another CNT) reducing the
thermal conduction by as much as two orders of magnitude.6,7 Nevertheless,
applications have been proposed for using CNTs as heat guides. A very recent
and innovative application has been to use CNTs as a heat guide to set up rapidly
propagating thermal reactionwaves in a reactingmedium.8 Bundles of CNTs are
coatedwith an exothermically reactivemixture, andwhen the reaction is initiated
rapid heat conduction along the tube speeds up the propagation speed of the
reaction front. Most interestingly the passage of the reaction front has been
found tobe accompanied by a large electrical thermopower pulse in the tubes that
is proportional to the speed of reaction propagation.
The use of CNTs in other (nonreactive) thermal management applications

has also been demonstrated. Vertically aligned ‘‘forests’’ of CNTs have been
proposed for efficient thermal management of computer chips, where removal
of heat can be the limiting factor in device performance, and where the power
densities that must be removed can be extremely high.9 Vertically aligned forest
structures utilize the full thermal transport potential of the CNTs, limited only
by contact resistance at the CNT ends. Other researchers have used embedded
networks of CNTs to engineer highly anisotropic thermal conductivity in
composite materials and to tailor the cooling properties of oils with the addi-
tion of a suspension of CNTs.10 In these cases the heat is carried across a sparse
network of CNTs. In order to travel long distances the heat must be passed
between CNTs at the nexus points where they overlap within the network, and
this process has its own resistance, which is found to be large. Transport in
these networks—both electrical and thermal—exhibits a percolation transition
in which if the network is too sparse there are insufficient nodal connections
linking the tubes and they will not create a contiguous pathway through the
material. Remarkably, the percolation transition for conduction of electricity
occurs at a lower network density than it does for the conduction of heat.
This is surprising as the networks are composed of CNTs with a distribution
of different diameters and chiralities with roughly only one third of them
being metallic; this implies that there is also a wide distribution of thermal
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contact resistance, with many junctions being electrically conductive but highly
resistive to heat.

5.2.2 Reducing Thermal Conductivity

In crystalline solids a fundamental lower limit of thermal conductivity can be
conceived by imagining that the mean free path of a phonon cannot be any
shorter than the intrinsic lattice spacing (similar conceptual limits can be
derived for amorphous solids). These limits are somewhat artificial, however,
being only a limit in which one model of heat flow no longer makes sense. Thus,
while these limits can provide useful guidelines when designing thermal sys-
tems, there are no rigid reasons why thermal resistance cannot surpass these
limits in some cases. This has in fact been observed experimentally for
roughened Si nanowires11 that have been shown to transport heat below the
perceived lower limit of conductance.
Beyond the fundamental question on limits of thermal transport it is often

desirable to increase the thermal resistance of a given material without greatly
altering other properties. An important technological example of this are
thermoelectric materials, for which it is desirable to minimize lattice thermal
conduction without altering the electrical properties of the material. In this
case, one can take advantage of the fact that the mean free paths of charge
carriers (holes and electrons) are much smaller than the mean free path of
lattice vibrations (phonon wave packets), and thus one can nanostructure the
material on a length scale that will confound traveling-wave phonons, but that
is invisible to charge carriers. Experimentally, this was first approached by
growing multilayered materials with controlled layer thicknesses. This is a top-
down approach that allows one to finely control the structure at the angstrom
level in one direction. Another top-down approach is to create a nanoscale
grain structure in the material by deformation or powder processing. This
approach has been successful for further improving the thermopower of
established thermoelectric semiconductor materials.12 Examples of other more
exotic approaches to suppressing thermal conduction include roughened
nanowires, nanoporous materials, and metamaterials that possess a phonon
bandgap. Recently, films containing nanoscale tubular pores running through
the film thickness have been found to suppress thermal conductivity by several
orders of magnitude.13,14

5.2.3 Characterisation

In addition to advances in the ability to fabricate structures at the nanoscale
there has been significant progress in the ways that one can measure thermal
properties. Length-dependent thermal conductance has been measured on
single CNT, and Si nanowires, lying across a set of heating stages.4,15–17 Using
this approach Chang et al. demonstrated thermal rectification along carbon
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and boron nitride nanotubes that have been asymmetrically decorated with
platinum carbide.
An alternative noncontact method of measuring heat transport properties in

nanoscale structures is by time-domain thermoreflectance. This is a pump-
probe technique in which a short (pico or nanosecond) laser pulse locally heats
the sample (raising the temperature by only a few degrees). The heating changes
the optical reflectance of the sample, and a probe laser beam is used to measure
this change in reflectance as the heat dissipates. Cahill and coworkers18,19 have
found that by making the region of material that is heated smaller than the
mean free path of some of the phonons these phonons leave the hot region
ballistically, allowing one to measure the contribution of different phonon
frequencies to thermal transport.

5.2.4 Nanoscale Phenomena

In addition to the greater range of thermal conductance that can be achieved
with nanoscale materials, the nanometer-sized systems provide new thermal
phenomena that are unique to this length scale. Making one or two dimensions
of a system small (while leaving the others macro-or mesoscopically large)
results in objects that are in effect two-, or one-dimensional. These objects still
live in a three-dimensional space (mathematically they are said to have a
codimension greater than one). Low-dimensionality systems possess new low-
frequency phonon mode shapes in which the object deforms into the uncon-
strained dimension. Films and surfaces gain surface Lamb waves, beams pos-
sess flexural and torsional modes, and tubes and fullerenes have radial
breathing modes and cyclops modes.20

The symmetries of these low-dimensional modes can give rise to subtle
thermal effects. Interatomic potentials are asymmetric, near equilibrium close
to harmonic, as we move further from equilibrium the potential softens as the
bond is stretched and stiffens when compressed. The most important anhar-
monic term in the representation of an atomic bond is the cubic term,
d3Eij=dR3

ij : Yet the symmetry of a nanostructured material combined with the
symmetry of the vibrational mode can result in modes that are symmetrical,
and where the fourth-order anharmonic term dominates. To see this, consider a
nanotube. Imagine sitting on the surface of a zigzag nanotube watching the
motion of atoms as the tube undergoes a torsional oscillation. We see that for
each torsional cycle an atomic bond stretches twice; the mode is symmetrical
and the cubic term in the bond potential d3Eij=dR3

ij results in a quartic term
d4Etor=da4tor dominating the anharmonicity of the modes. Following the motion
of the radial breathing mode (RBM), on the other hand, we see that it is
asymmetric, and the cubic term d3ERMB=da4RBM dominates. Thus, through the
increased freedom of a codimension greater than one, it is possible to obtain
vibrational modes with a mixture of differing symmetry of anharmonicity,
although the structure is constructed with only asymmetric bonding potentials.
Another simple example of this is a tensioned one-dimensional chain of atoms
connected by harmonic potentials. The ‘‘string-like’’ modes of the chain are
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very strongly anharmonic because as the string oscillates the chain length is
increased, increasing the overall tension in the chain. This effect can result in a
negative coefficient of thermal expansion along the chain length, and is
observed in carbon nanotubes that contract along their axis when they get
hotter.21,22

Reducing the dimensionality of an object can cause other significant changes
in properties. Diffusion in systems with two or fewer dimensions is space
filling—that is given an infinite amount of time a random walker will visit every
lattice site—this is not the case for three-dimensional spaces. A mathematical
connection between diffusion and heat conduction results that heat flow in low-
dimensional objects does not obeyFourier’s law. For the case of one-dimensional
systems the thermal conductivity of the system is found to scale with the length of
the system, k B La, with a being reported between 0.3,23 and 1/3.24 This has
important implications for modeling thermal transport in low dimensions: in
simulation one often extrapolates the scaling of their results with system size in
order to estimate macroscale properties or to check convergence. This result
implies that there is no length scale convergence in one-dimensional systems.

5.2.5 Quantum Phenomena

The examples given thus far are purely classical arising only due to restricted
dimensionality; however, advances in characterisation and fabrication at the
nanoscale have allowed researchers to measure several purely quantum effects
of atom motion. Roukes and coworkers, by cooling down a free-standing SiN
membrane supported by four phonon waveguides, were able to freeze out all
but the lowest-frequency vibrational modes in the waveguides and were able to
measure ballistic conduction through just the four lowest-frequency modes
(one longitudinal, two flexural, and one torsional) in each waveguide.25 They
found the quantum of thermal conductance, go, to match the Landauer
equation go ¼ p2k2BT=ð3hÞ; approaching the quantum limit of measurement.
A different quantum measurement effect that is close to the grasp of current

experimental methods is the direct observation of zero-point motion and the
Heisenberg uncertainty in a mesoscopically large mechanical system. Gigahertz
nanoscale resonators can be frozen to their ground state at milikelvin tem-
peratures, but one must also be able to sensitively detect the displacements
associated with this motion which are on the subangstrom scale. Beyond
establishing that quantum-mechanical effects are observable in mechanical
systems containing many billions of atoms, interesting applications for quan-
tum computing are found if the system is coupled to a quantum-mechanical
two-level system.26

5.2.6 Far-from-Equilibrium Behaviour

Traditionally, the way that we have controlled and transport heat in solids has
been close to equilibrium—a usage that is reflected in the established theories of
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heat flow such as the Boltzmann transport theory (BTT) in which heat carriers
transport thermal energy between regions that are in local thermal equilibrium.
In recent years, however, there have been examples of nanoscale devices (or
phenomena) that take advantage of thermal behaviour far away from equili-
brium, that is, where thermal occupation of vibrational modes does not cor-
respond to the Bose–Einstein distribution (the local temperature is not well
defined) but is instead athermally distributed amongst the system’s vibrational
modes. Operating away from equilibrium allows one to take advantage of the
mechanical properties of a system at a particular set of frequencies and thus
enables the exploitation of a wider range of thermal behaviour than can be
achieved at equilibrium.
An athermal phonon population (APP) can arise in suspended carbon

nanotube (CNT) resonators through either frequency-specific Joule heating of
optical phonons (at K and G),27–30 or by direct driving31,32 (or cooling33) of
low-frequency flexural modes. In the former case this causes the electrical
conduction to saturate at high voltage, and in the latter the resulting APP can
dramatically reduce the resonator’s quality factor.34,35 APPs can also arise
when heat is conducted across CNT interfaces.10,36 Taking advantage of the
APP leads to strategies for engineering interfacial thermal conductivity,37,38

and may be important in the recently discovered thermal power waves in
CNTs.8 Biological systems can also display nonequilibrium thermal-energy
distributions. Enzymatic reactions can result in a large heating of localised
modes in the protein. This heat must be dissipated efficiently without dena-
turing the enzyme, and is transferred through a restricted set of localised
vibrational modes without heating the enzyme as a wholeii.39,40 A similar
‘‘energy funneling’’ phenomenon is observed in virus capsids41 in which laser
heating of high-frequency modes is funneled into a handful of low-frequency
mechanical modes—an effect that can may be exploited for selectively
destroying harmful viruses.42 In the second of the case studies given later in this
chapter we discuss APPs that arise from frequency-selective transmission of
heat in two weakly interacting objects, and we show how this can be exploited
for applications in chemical sensing.

5.3 Survey of Simulation Methods

There are two approaches to computing thermal properties of nanoscale sys-
tems. If the theory behind the property of interest is well understood one may
compute the property directly, perhaps using simulation or first-principles
calculations to obtain the values of input parameters. An example of this
approach is the use of density-functional theory (DFT) to compute a material’s
phonon density of states and then using that information to compute the
specific heat as a function of temperature. This approach works well for cal-
culating intrinsic properties of a system that are not dependent on size or
geometry. An alternative approach that is valuable for system-specific

iiA similar concept is important for barrierless termolecular reactions.
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properties is to use atomistic simulation to model the behaviour directly. This
approach can be thought of as performing an experiment within the computer
(in silico) instead of in the laboratory. An advantage of direct simulation is that
as one has the full atomistic trajectory of the system in time it is often possible
to dissect the data to determine features that are contributing strongly to the
phenomenon under study, and to gain insight into how one can alter the system
to change it. Both approaches—direct calculation, and computer experiment—
are important and complementary as will become evident in the rest of this
chapter.
One of the most important thermal properties for engineering applications is

the thermal conductivity of a material, j, which is defined by the phenomen-
ological Fourier’s law that relates the steady-stateiii thermal flux, JQ, to the
local temperature gradient:

JQ ¼ �j � rT : ð5:1Þ

Here, we review several well-established methods for predicting the lattice
contribution to k at the nanoscale. Calculation of k provides good examples of
both direct computation approaches and in silico experiment, and in this
context we discuss the general advantages and challenges of these two
approaches (beyond just computing k). At the end of this section we go beyond
the mean thermal conductance to examine far-from-equilibrium thermal
behaviour, and the methods can be used as the basis of studying other ther-
momechanical phenomena in nanoscale systems, as will be shown in the case
studies that follow this section.

5.3.1 Direct Computation of j

In crystalline solids, heat is carried by moving scattering lattice vibrations, and
one can therefore write the thermal flux using the Boltzmann transport equa-
tion (BTE):iv

JQ ¼
X

branches

ZN
0

o�hbnðoÞlðoÞruðoÞ
@Nðo;TÞ

@T
rT : ð5:2Þ

Here, the sum is performed over all phonon branches and polarisations, and
n (o), l (o), and ru (o) are, respectively, the group velocity, mean free path,
and volumetric density of states for phonons with frequency o. b is a

iiiWe restrict discussion to the steady-state properties. Inclusion of time dependence to Fourier’s law
ignores the fact that heat travels with a finite velocity and thus for describing transient thermal
solutions one must use the relativistic heat conduction equation, or the Cattaneo equation, which
is beyond the scope of this chapter.

ivNote that the BTE is a very general equation for describing the motion of particles in a fluid that is
away from equilibrium. Only in 2010 has the general form of the equation been rigorously proven
for systems close to equilibrium. For simplicity, we jump straight to the form appropriate for the
motion of a phonon gas, and further simplify by assuming isotropy so that k becomes a scalar
quantity rather than a tensor.
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dimensionless geometric factor and N(o, T) is the number of phonons occu-
pying a mode with frequency o at temperature T. Strictly, one must solve for N
(o, T) self-consistently; however, close to equilibrium this can be approximated
by the Bose–Einstein distribution.
The BTE is very general and may be extended to include the ballistic con-

tributions to transport that can occur in very small systems. Computing k
becomes a matter of computing b, n, l, and ru, and the accuracy of one’s
prediction relies on how accurately each of these terms are computed. The
terms n and ru can be computed from first-principles methods. The physics of
scattering in the system is encapsulated in the mean free path term and includes:
3- and 4-phonon anharmonic scattering processes; electron–phonon interac-
tions; and scattering from surfaces, interfaces, and impurities. The detail with
which one includes these factors will determine the ultimate accuracy of the
prediction.
One important advantage of directly calculating k from the BTE is that

the quantum mechanical nature of heat is treated correctly—both in terms
of the selection rules for phonon creation and annihilation, and the occupation
of the vibrational spectrum. The difficulty is in quantifying all the detailed
geometry-specific phonon transition rates.
In a system with a high degree of disorder, propagating phonon states are

not well defined and the phonon gas model of transport is no longer appro-
priate. Allen and Feldman43 and others have developed a model description
relevant to such a system. They classify the quanta of vibrational energy
(vibrons) in an amorphous system into: propagons, that reside in low-frequency
plane-wave-like modes; diffusons, that reside in nonlocalised but non-
propagating (stationary) modes; and locons, that occupy high-frequency
localised modes that are above the mobility edge. The majority of heat con-
ducted through these systems is mediated by phonon transitions between dif-
fusion modes.

5.3.2 Computing j by Direct Simulation

Amaterial’s intrinsic resistance to conducting heat is due tophonon scattering that
stems from anharmonicity in the interatomic interactions. As enumerating and
computing all the scattering processes is difficult, a potentially more appealing
approach is simply to accurately compute the anharmonicity of the atomic inter-
actions and then use this withinmolecular dynamics (MD) simulations tomeasure
the thermal conductivity in silico. The simulationwill numerically account for all of
the phonon-scattering processes without having to identify them a priori.
The most intuitively straightforward method for computing k in this manner

is to impose a thermal gradient in a system and simulate it using MD. One
can straightforwardly set up a molecular dynamics simulation in which two
(distant) slabs of atoms within a solid are thermostatted to different tempera-
tures. By measuring the work done by the thermostats at each side of this
thermocouple one finds the heat current that is transported down the thermal
gradient in the intervening material between the slabs. However, while this
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approach most resembles a real experiment, it is fraught with several
challenges, some that are common to all MD simulations, and some (such as
the size of the simulation cell and the use of thermostats) that can be overcome
with more carefully designed simulations.
In the computational setup described above, the temperature in the inter-

vening material does not vary smoothly between the two thermostatted regions
but experiences a discontinuous step at the boundary with the thermostatted
regions—making the temperature gradient hard to control computationally.
More significant, (especially in terms of computational affordability) is that the
computational cell must be large enough to accommodate the mean free path of
the heat-carrying phonons; and these can be several hundreds of nanometers.
While this is large from the point of view of computational tractability, it is
often still very small compared to the temperature difference, resulting in a
large DT, which can throw into question the validity of the linear response
approximation.
An alternative approach is to switch the roles of cause and effect, so that

rather than impose a temperature gradient one imposes a fixed thermal flux by
adding (non-net-translational) kinetic energy at a constant rate to the atoms in
one region, and removing heat at the same rate in the cold slab. This procedure
was first developed by Müller-Plathe44 and is often referred to as reverse
nonequilibrium molecular dynamics (RNEMD). The approach is applicable to
many transport phenomena and is also used for computing the viscosity of
fluids.45 The approach still suffers from requiring a very large computational
cell but the system converges to the steady state more rapidly than the direct
nonequilibrium MD approach described above.
It is possible to move away from the nonequilibrium approaches altogether,

and instead to simulate a system at equilibrium in the microcanonical ensemble
(NVE) and make use of the fluctuation-dissipation theorem that relates the
linear response properties of a system out of equilibrium to the dissipation of
thermal fluctuations within the system at equilibrium. The Green–Kubo
method46 relates the thermal conductance k, to the autocorrelation function of
the fluctuations in the heat flux JQ, at equilibrium:

k ¼ 1

T2kBV

ZN
0

dtCðtÞ; ð5:3Þ

with kB the Boltzmann constant, V the volume of the cell and the correlation
function C(t) defined by:

CðtÞ ¼
Z

dtJQðtÞJQðtþ tÞ ¼ JQðtÞ; JQðtþ tÞ
� �

; ð5:4Þ

JQðtÞ ¼
dR

dt
; ð5:5Þ

118 Chapter 5



R ¼
X
i

rihi: ð5:6Þ

Here, the term R can be considered the centre of energy, as the sum of the
positions of all atoms weighted by the sum of their potential and kinetic
energies.v One advantage of the Green–Kubo method (in addition to its com-
putational simplicity) is that as the heat-flux correlation function decays much
more rapidly than the heat-carrying phonon’s mean lifetime, the system size
that must be simulated can be many times smaller than is required for none-
quilibrium MD methods.47

For all of their intuitive appeal, using MD simulation to in silico measure k
suffers from several important and fundamental challenges, the most important
of which is that the simulations are classical—that is, the trajectories of the
atoms are integrated according to Newtonian mechanics without any quantum-
mechanical phenomena included. This is usually justified by stating that for
most elements at room temperature the atoms are sufficiently heavy that their
de Broglie wavelength is negligible and the atoms can be treated classically.
A notable exception is hydrogen, whose small mass does make quantum-
mechanical effects significant and makes simulation of water particularly
troublesome.77 While this reasoning is true it overlooks two other quantum
effects, first, that the permitted energy of vibrational modes is quantised with
occupation En ¼ o�h nþ 1

2

� �
; and that the quanta of energy (that we refer to as

phonons, not the modes that they occupy) are bosons and so fill the available
states according to the Bose–Einstein distribution.
This has two consequences: First, not all modes have a uniform amount of

energy—low-frequency modes will hold more energy than higher-frequency
modes according to relation EiðTÞh i ¼ oi�h=expðoi�hbÞ � 1, where, b ¼ 1=kBT ,
is the reciprocal temperature. At temperatures below the Debye temperature,
TD, the high-frequency modes with be unoccupied and will possess only their
zero-point energy. This stands in direct contrast to a classical system in which
all the modes may have a continuum of energy, and where on average all the
modes will have the same energy regardless of the temperature. For this reason
molecular dynamics simulations are usually performed at temperatures above
TD, where at least the participation of all vibrational modes is a reasonable
assumption (although the filling of the modes is still incorrect). Alternatively,
simulations may be performed at low temperatures if the phenomena of interest
only involves low-frequency modes, and if it can be shown that the activity of
high-frequency modes does not influence the behaviour of these low-frequency
modes.
The second consequence of the quantum harmonic oscillator is that when

heat is transferred from one mode to other modes (i.e. when phonons are

vThe potential energy of an atom can be poorly defined for many-body potentials; however, it is
usual to approximate the local bonding energy to be shared between participating atoms in a
pairwise fashion.
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created and annihilated) the participating phonons must follow strict selection
criteria such that the sum of the frequencies of the participating modes before
and after the transition event are equal. No such restrictions are present in
classical systems. The importance of this for MD simulations is that one cannot
assume that the processes observed are directly transferable to real quantum-
mechanical systems. Goddard and coworkers have shown that in the case of
diamond at temperatures above TD, the quantum correction to the classical
Green–Kubo calculated k is small.47

Besides the fundamental quantum-mechanical deficiencies of MD simula-
tions there are also some practical considerations. Thermodynamic properties
are an ensemble average over all the possible states of the system. While in
principle MD simulations are ergodic and will correctly sample phase space the
time it takes to do so is very long, much longer than the duration that can be
feasibly achieved in a single simulation. In a single MD simulation the systems
trajectory only samples a narrow region of phase space, if we are to properly
average over phase space we must run many simulations starting with very
different initial conditions in order to attain a representative sampling on the
ensemble.

5.3.3 Gaining Insight from Simulations

Despite the many limitations and deep-rooted challenges for simulating ther-
mal phenomena with MD methods, it is still a widely used tool that can be
powerful for gaining physical insight if it is used judiciously. The main reason
for this is that one knows the positions and velocities of every atom in the
system during a MD simulation (knowledge that is out of reach from a real
experiment). Armed with this raw data it is often possible to tease out subtle
mechanisms of heat transport, scattering, and dissipation. This can be parti-
cularly useful when designing structures that suppress or enhance the mobility
of phonons within a particular band of frequencies. Extending the analogy of
the computer experiment these methods are like the characterisation tools of
the real experimenter: they do not interfere with the physics used to simulate the
system, but are used to interpret the results of simulation. The last part of this
review of computational methods focuses on these numerical ‘‘characterisa-
tion’’ methods for distilling insight from raw MD simulation data.
Considerable insight can be gained simply by watching an animation of

atomic motion in an MD simulation. One gains a mental picture of what the
atoms are doing and one can quickly spot anomalous behaviour. As a method
this is not very rigorous, it is a challenge to be sure that the animation is
representative of the statistical ensemble, and it is difficult to disseminate
movies in the traditional publishing format. However, the human brain is very
good at spotting visual patterns (sometimes too good, finding patterns that are
not there): watching a movie of simulated atom motion can quickly help one to
identify bugs, or spot whether seemingly interesting results are merely artifacts
of the system setup. It can also help identify interesting and physically
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meaningful behaviour on which more sophisticated and rigorous numerical
characterisation methods can be trained.
A more rigorous method of ‘‘watching’’ the atoms was employed with great

success by Phillpot, et al.48 These researchers launched phonon wave packets at
high-angle grain boundaries in Si and taking snapshots of the average kinetic
energy of the atoms within slices of the computational cell, they followed the
envelope of vibration as it collided with the interface, and were able to identify
the mixture of scattered and transmitted wave packets. The method was used to
determined which vibrational frequencies are transmitted most efficiently
across the grain boundaries.
Much information can be learned from the vibrational spectrum of a

nanoscale object, which as was mentioned above, can differ greatly from bulk
systems. One consolation of the classical limitations of MD is that we can
compute the vibrational spectrum (more or less) for free from any equilibrium
MD simulation that we perform by Fourier transforming the autocorrelation
function of the total kinetic energy. This can be done for any temperature, and
while the spectrum must be weighted by the Bose–Einstein distribution to
obtain the correct intensities the MD will capture the shift in mode frequencies
due to filling of anharmonic modes.
The zero-temperature phonon spectrum for a nanoscale system can also be

computed directly by diagonalising the Hessian matrix or the dynamical matrix
(depending on whether the system is molecular or extended). Both of these
methods have the advantage that in addition to the frequencies of the modes,
one also obtains their eigenvectors. For very large systems with many millions
of atoms, finding all the eigenvectors becomes computationally expensive;
however, one can search sequentially for the lowest-frequency modes by
recasting the matrix diagonalisation as an energy-minimisation problem, a
method developed by Sankey et al.49 for computing atomistically the vibra-
tional modes of virus capsids.
Knowing the eigenvectors for the vibrational modes permits one to search

through them, classifying the modes based on their symmetry or their spatial
character, and to identify which modes are dominating the thermal phenom-
enon under study. For example, if one has a complex system of weakly inter-
acting molecular units, such as a double-walled CNT, it permits one to identify
modes that are confined to each individual CNT and those modes that are
shared between the tubes. Obviously the shared modes will be most important
for transmitting heat between the inner and outer walls of the CNT.
There are other ways of classifying modes based on their spatial extent. Allen

and Feldman et al.50 have classified the modes of amorphous Si, into propa-
gating, diffusive, and localised modes. The lowest-frequency modes extend
across the full extent of the system and can be thought of as propagating wave-
like deformation modes. The wavelengths are much longer than the scale of the
structural heterogeneity and the mode feels the average mechanical properties
of the material—the limit being the infinite-wavelength mode corresponding to
a homogeneous eigenstrain. At intermediate frequencies the modes become
weakly localised, in that the wavelength of the modes becomes comparable to
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their mean free path. Above this so called Ioffe–Regal limit51 the modes are
diffusive, and the majority of heat is transported by energy exchange through
these modes. The highest-frequency modes are short and localised around
structural anomalies. These transport little heat and are said to be above the
mobility edge.
Various approaches for measuring the degree to which a mode is localised

have been developed by different researchers. Galli et al.14,52 have computed the
‘‘participation ratio’’, p of the eigenmodes in a number of nanoscale systems
with one or two reduced dimensions. The participation ratio of mode i is a
measure of the fraction of atoms in the system that are participating in the
displacement of this mode and is defined as:

pi ¼
1

N

XN
j¼1
ðeij � eijÞ2

 !�1
; ð5:7Þ

where N is the total number of atoms, and eij is the displacement vector of the

jth atom due to mode i with
PN
j¼1

eij � eij ¼ 1: Fully delocalised modes have p

ranging between 1 and 0.5 with localised modes having smaller p with the limit
that a mode localised to a single atom has p¼ 1/N. Yu and Leitner40,53 have
sorted the vibrational modes of a large protein molecule by their exponential
localisation length, x by best fitting exp (|r – ro|/x) to the decay of the mode’s
amplitude away from the mode’s centre (ro). Using this approach, an inverse
correlated was found between localisation length and mode frequency.
Armed with the knowledge of some or all of the vibrational modes of a

system one can project these modes onto the atomic displacements and velo-
cities at any time during an MD simulation to obtain the instantaneous
amplitude, a(t), and velocities, _aðtÞ; of the modes.

aiðtÞ ¼
XN
j¼1

eij � ðrjðtÞ � roj Þ; ð5:8Þ

_aiðtÞ ¼
XN
j¼1

eij � tjðtÞ: ð5:9Þ

From computing the velocity of individual modes in this way during an
equilibrium MD simulation one can calculate the mode’s lifetime, ti, by inte-
grating the normalised autocorrelation function of the mode velocity.6,54

Integrating gives the time it takes for the velocity autocorrelation function to
decay, which is the average time after which the oscillation has lost coherence
with itself. Galli and coworkers have shown the power of this approach by
multiplying the computed lifetimes by the phonon group velocity, ng (the gra-
dient of the phonon dispersion) to calculate the phonon mean free paths,
l¼ ngt. The mean free path appears in the BTE (eqn (5.2)), and thus computing
this from simulation permits one to attribute each mode’s contribution to the
total heat transport.
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Mode projection also yields insightful information from nonequilibriumMD
simulations where knowledge of the modes not only allows one to analyse the
results of a simulation but also excite a simulation away from equilibrium in a
carefully chosen way. Adding an instantaneous velocity and/or displacement to
the system along a mode’s eigenvector excites a single vibrational mode. After
excitation, by simulating in the microcanonical ensemble one can follow the
system as it relaxes back to equilibrium. This scheme has been widely used for
uncovering the detailed mechanisms of energy transfer in a diverse array of
systems, including: phonon scattering at grain boundaries,48,55 energy relaxa-
tion within protein molecules41,56 and damping in CNT resonators.34,35 More
detailed examples of the use of the phonon projection are given in the two case
studies later in this chapter. Here, we give a pedagogical discussion of
frequency-dependent energy transfer. The aim is to show the types of infor-
mation that can be gleaned from MD simulations using mode projection, and
some of the areas in which care must be taken.
As a test system, let us consider the case of two identical carbon (10, 0)

carbon nanotubes. The tubes are lying adjacent and parallel to each other, and
they are weakly bound together by the van der Waals interactions between
them. The tubes are (10, 0) tubes with a 4.2-nm periodic repeat distance, and
they are in a vacuum. Full details of the simulation setup can be found in ref 36.
After optimising the structure of an isolated single tube, its eigenmodes are
computed using the frozen phonon method. Note that this only gives stationary
solutions, not traveling modes—it is equivalent to diagonalising the dynamical
matrix at G for the whole computational cell. The second identical tube is now
introduced and the system is again optimised—the two tubes are attracted to
each other and flatten very slightly where they ‘‘touch’’ to maximize this
attraction. The normal modes of the isolated CNT are not the normal modes of
this new composite system; nevertheless, it is instructive to interpret the transfer
of energy in terms of the modes of the isolated CNT. We now excite just one
mode in one CNT by displacing it. In this example, we choose the radial
breathing mode RBM of the left-hand CNT that we call tube A.vi The system of
the excited and relaxed tube is simulated in the microcanonical ensemble. Mode
projection is used to compute the amplitude and velocity of each mode mea-
sured relative to the ground state of the relaxed double-tube structure at every
timestep (roj in eqn (5.8) is the atomic positions in the optimised double-tube
system). Before the projection is performed care must be taken to unwrap any
atoms that have crossed the periodic boundaries, and if the tube has randomly
rotated it must be mapped back into the orientation in which the Hessian
matrix was computed. The set of mode energies at a time t are represented as a
smoothed spectrum by summing a set of Lorentzian functions centred at the

viBesides the mode that has been externally excited, the tubes are at absolute zero. This is an
unusual and hypothetical situation that is seemingly problematic for classical dynamics. However,
as all modes have zero energy using classical mechanics it is justified any time t¼ 0. Moreover, as
we are only following the first stages of the relaxation of this energy before all become classically
occupied, the use of MD remains justified for the short timescale simulated here. The simulations
were repeated at finite temperatures and the same behaviour was observed.
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mode frequencies and weighted by the mode energies. This approach to
obtaining the vibrational spectrum is considerably more computationally
expensive than the velocity correlation method, and less straightforward to
implement; however, it gives us the excited spectrum at every time step, rather
than averaged over some simulation time. Plotting the instantaneous spectrum
against time gives the surface plots shown in Figure 5.1.
Examining the plots in Figure 5.1 reveals a surprising amount of information.

First, we can follow the first cascade of energy as the excitation of theRBM in the
‘‘hot’’ CNT relaxes towards equilibrium. Four distinct energy-transfer events
are distinguishable: (a) First, energy is transferred resonantly from the RBM in
the hot tube to the RBM in cold tube. The transfer is frequency-selective and the
frequency of the heat is preserved after being exchanged between tubes; (b) Next,
the energy in the cold tube’s RBM is scattered anharmonically into a mode with
exactly half the frequency of the RBM. It can be shown by examining the
eigenmodes that this frequency halving transition arises because the RBM is
asymmetrically anharmonic whereas the half-frequency mode is not;36 (c) The
half-frequency mode in the cold tube transfers the excitation resonantly back
to the equivalent mode in the hot tube, where (d) some of the energy is
anharmonically scattered back into the initially excited RBM.
In addition to following the cascade of energy transitions, the projection data

reveals much information about the nature of the participating modes.While the
projection scheme computes the exact instantaneous kinetic energy of each

Figure 5.1 Plots showing the relaxation of the excited RBM in one of a pair of parallel
carbon nanotubes. Four distinct energy transfer events are distinguishable:
(a) hot tube resonantly exchanges energy fromRBMintoRBMin cold tube,
(b) energy is scattered anharmonically within cold tube from RBM into a
modes with half the frequency, (c) resonant exchange of energy from cold
tube to hot between half frequency modes, and (d) anharmonic scattering
within hot tube from half frequency mode to RBM.
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mode, the potential energy is only estimated using the harmonic approximation.
This inaccuracy can be used to our advantage. Comparing the over-(and/or
under) estimation of the potential energy with the kinetic energy of a mode
provides important information regarding the degree of anharmonicity in the
mode, whether the anharmonic terms stiffen or soften the mode, and whether
anharmonicity is asymmetric (as is the case for the radial breathing mode of a
CNT). This information can be compared with and corroborated by computing
the frequency shift of the mode relative to the frozen-phonon limit (computed
from the power spectrum of the mode’s velocity autocorrelation function).
Comparing the amplitudes of a mode’s potential and kinetic energy can also be
used to identify nonresonant oscillations. The row of small peaks below 1 THz in
the spectra of both the hot and cold tubes are an example of this. It is found that
this oscillation has very little kinetic energy and is mostly comprised of a quasi-
static elastic deformation of the low-frequency flattening modes of the tube. The
excitation is artificial, and is not caused by these modes oscillating but by amuch
slower oscillation between the two tubes as awhole. The tubes ‘‘chatter’’ together
under the influence of the van der Waals interaction. As the tubes come close
together they flatten slightly (like a bouncing tennis ball) and it is the deformation
of this flattening that gives rise to the serrated row of peaks.
Thus far, we have discussed the use of mode projection as a characterisation

tool for interpreting the results of MD simulation; however, as mode projection
gives information about the instantaneous state of the system there is no reason
why this information cannot be fed back into the simulation and used to direct
it. For example, knowing the eigenmodes of a system and using projection to
determine their occupancy allows one to envision using external driving forces
to regulate the energy in specially selected modes. This could be used for:
continually driving a system away from equilibrium (as is done experimentally
in driven nanomechanical resonators); enforcing a Bose–Einstein occupation of
the classical modes; or even in schemes for efficiently searching phase space for
rare events. While such procedures are not yet widely used they are being
actively developed. Praprotnik et al. have shown that molecular dynamics can
be performed efficiently in phonon space just as easily as in Cartesian space,57

while Parinello et al.58 have developed a Lengevin thermostatting algorithm
that uses history-dependent (that is, correlated) noise to drive particular fre-
quency modes without the need for mode projection. The continued develop-
ment of these types of algorithms means that MD—for all of its classical
shortcomings—will continue to be an important and powerful tool for studying
nanoscale thermal behaviour both at equilibrium, and far from it.

5.4 Example: Heat Flow in a Nanoscale Material;

Intrinsic Dissipation in CNT Resonators

Carbon nanotubes possess a number of properties that make them attractive
for use as resonating members in many nanoscale devices. The use of CNT
resonators has already been demonstrated as a radio tuner,59 an entire radio
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receiver,60 and a radio transmitter.61 In addition, CNT resonators have been
used to measure minuscule masses,31 even down to the mass of a single Au
atom,32 and to approach the quantum limits of vibration.62 In addition to these
demonstrated applications the potential uses for CNT resonators are much
broader, being applicable to any nanoscale device that requires controlled
vibration, such as gyroscopes, mechanical processing of signals, and simple
mechanical time keeping. The reason why CNTs are so suitable are multifold:
CNTs’ extraordinarily high stiffness combined with their low density enables
them to attain very high natural frequencies, and frequency sensitivity. That
CNTs are quasi-one-dimensional or string-like provides well-defined strategies
for tuning their frequency—for example one may alter their length or put them
under tension. Finally, CNTs can be both driven, and sensed, electronically by
a number of different methods, making it possible to integrate CNTs into more
complex nanoelectromechanical systems (NEMS) in which the resonator is
only one part of the device.
To date, the biggest impediment to the use of CNTs as resonators is their

very poor quality factor, Q, which when measured at ambient temperatures
(and under conditions of constant driving) falls in the range of 8–300. (Q is
defined to be 2p times the inverse fraction of oscillator energy lost per cycle, and
may be thought of as roughly the number of oscillations it takes for the energy
to be reduced by 99.8%.) This result has been resistant to improvement, having
been observed both under vacuum and at ambient pressure; in both cantilev-
ered and doubly clamped geometries with many different clamping methods;
and through many different measurement techniques.31,63–66 Only recently by
cooling to milikelvin temperatures have Qs in excess of 105 been attained.62 The
universally poor ambient temperature results suggest that an intrinsic damping
mechanism may be dominant. Macro- or mesoscopic theories of intrinsic
damping from sources such as switching of defect states, thermoelastic damping,
and phonon drag relate dissipative behaviour to the thermal energy in the system,
that is, the background temperature Tbg. These theories have been successfully
used to describe dissipation in some nanoscale systems, particularly those where
phonons are diffusive and phonon lifetimes are shorter than the period of the
resonator. Roukes et al.67,68 and others69 have suggested that the intrinsic ther-
moelastic damping mechanism is capable of producing very low Q factors in
CNTs due to their very small surface-to-volume ratio—although other
researchers disagree on the importance of this mechanism.70 Previous compu-
tational work by Jiang et al., of an open-ended, cantilevered CNT found
Q¼ 1500 at 293 K, with the unexpected temperature dependence: QBT –0.36,
although the authors did not explicitly identify an intrinsic damping mechanism.
The question of whether a poor quality factor is intrinsic is one into which

in silico experiments can lend considerable insight. In the computer, one can
simulate a carefully chosen idealised test system in which all extrinsic sources of
dissipation have been removed. Simulating such a system it is possible to see:
First, if intrinsic damping alone can account for the poor Q factors; and sec-
ond, to identify the mechanisms of intrinsic damping with the goal of finding
ways to mitigate them. We recently performed such a study that leads to the
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discovery of a new and surprising dissipation mechanism—one that can yield
Mpemba-like behaviour in the cooling of an excited mode. The work is
described here in order to serve as one example of how computational methods
can be used to gain insight into nanoscale thermal phenomena.
The messy system of a doubly clamped suspended CNT resonator was

represented in the idealised test system as a short section of a periodically
repeated (along its axis) single-walled CNT, isolated in a vacuum and free from
defects and mass impurities. This setup removes dissipation sources from defect
migration, clamping friction, and gas damping. The effect of periodic boundary
conditions is to add a clamping of sorts by restricting the number and wave-
length of the CNT’s flexural modes. The frequencies of flexural modes in the
unclamped tube are higher than the modes of the same wavelength in the
doubly clamped counterpart as there is no centre-of-mass motion. Instead of
simulating the resonator under conditions of constant driving—as is the case
for the experimentally measured Q—the resonator was simulated in the
microcanonical ensemble as an initially excited flexural mode was allowed to
the ring-down.
A typical simulation proceeded as follows: (1) The structure of a (10,0) CNT

(simulated using the AIREBO potential for carbon–carbon interactions71) was
relaxed, and the periodic repeat distance optimised.vii (2) the stiffness matrix
for the system was computed and then diagonalised to yield the tube’s
eigenmodes, and their frequencies. (3) The tube was heated to a desired
background temperature, Tbg, and allowed to equilibrate. (4) An instanta-
neous velocity was added to the system along one particular eigendirection
(usually that of the second flexural mode) such that the total average tem-
perature of the system is raised by the amount Tex. (5) Ring-down was
simulated (NVE) during which the vibrational energy distribution in all of the
modes of the CNT is tracked using the mode-projection algorithm described
above. The excitations of the flexural mode were large; however, despite the
energetic excitations it was found that the mode remained reasonably
harmonic, containing at most a 5% anharmonic contribution to the potential
energy.
This study relies extensively on in silico experiments to investigate dissipation

mechanisms. It is therefore imperative to ensure that the computational
methods used are meaningful. It should be noted that the simulations were
performed using classical molecular dynamics at temperatures well below the
Debye temperature for the CNT. This is justified a posteriori by the finding
that it is low-frequency modes that are participating in the dissipation
mechanism. Simulating at low temperatures allows observation of the dis-
sipation with little obfuscating thermal noise, and therefore is preferable if it
can be physically justified. Leaving aside the issue of mode occupancy,
a more fundamental problem is the use of classical mechanics to simulate the

viiThe length of the tube was typically 8.4 nm, which it should be noted has an aspect ratio con-
siderably lower than a typical NEMS resonator, and additionally possesses no residual axial
tension. The short tube length was chosen to reduce the computational cost of the mode-pro-
jection scheme.
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dissipation of an energy that is quantised. Yet, as a more suitable method
that includes quantised dynamics is lacking, classical dynamics is used with
the understanding that the physical interpretation of the results is limited.
Similarly, interatomic forces were computed using empirical potentials that
were formulated to capture the energetics of carbon and hydrogen bonding
across a range of bonding coordinations. There is no reason to expect this
to correctly represent the anharmonic character of the carbon–carbon bond
in a CNT. Thus, it is necessary to verify the robustness of the reported
simulation results to changes in interatomic potential. The results of the
simulations are found to be sensitive to changes in the interatomic potential;
however, the overall qualitative behaviour is not. This may be in part because
the dissipative behaviour is due to the shapes of the low-frequency modes,
which are largely dictated by the tubular geometry rather than the details
of the potential. As the qualitative trends do not depend on how the simu-
lations are performed one is justified to draw general and meaningful
conclusions.
The ring-down curves for the second flexural mode of a 8.4-nm long (10,0)

CNT, with a background temperature of Tbg¼ 5 K, and with increasing levels
of initial excitation is shown in Figure 5.2(a). It can be seen that the attenuation
of the oscillation follows a sigmoidal path, with larger initial excitations being
completely damped in a shorter time than softer excitations. Figure 5.2(b)
shows the ring-down profile for a 150 K excitation in tubes with increasing
thermal background. As the background temperature rises the region of fastest
attenuation is moved to earlier times.
To interpret the attenuation profiles in Figures 5.2(a) and (b) it is instructive

to consider the attenuation of a simple damped harmonic oscillator with
temperature-dependent dissipation. The equation of motion for such an
oscillator is given by

€u ¼ �o2u� BðTbgÞ _u; ð5:10Þ

where u, o, B, are respectively the oscillator’s displacement, (undamped) fre-
quency, and mass-weighted drag coefficient, with the overdot indicating the
derivative with respect to time. If the period of oscillation is short in com-
parison to the attenuation time (o c B/2), then we may ignore the oscillatory
behaviour, noting instead that the rate at which energy is lost to drag is pro-
portional to twice the kinetic energy, and thus the total energy in the oscillator
decays according to

_EðtÞ ¼ �BðTbgÞEðtÞ: ð5:11Þ

As a first approximation, the drag term is assumed to take the form of a first-
order Taylor expansion: B(Tbg)¼BoþB0DTbg, with B0 positive. The increase in
background temperature is simply the energy lost from the oscillator divided by
C, the specific heat of the background, so that DTbg¼ (Eo – E(t))/C. Solving
eqn (5.11) gives the attenuation profile,
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EðtÞ ¼ Eo
Bf

Bf � Bið1� eBf tÞ ; ð5:12Þ

(plotted in Figures 5.2(c) and (d)) where Bi¼B0 is the initial damping coeffi-
cient, and Bf¼BoþB0Eo/C is the damping coefficient when the system is fully
relaxed. This simple model displays many of the features of the molecular
dynamics simulations in Figures 5.2(a) and (b), including an inflection in the
attenuation profile (if the damping coefficient more than doubles as the system
relaxes), as well as the trends that arise from independently increasing Tex or
Tbg. Using a simplified ‘‘toy’’ model such as this is often very instructive for
interpreting simulation results. In this case the model that might have initially
seemed as surprising sigmoidal attenuation of the resonator’s ringing is entirely
consistent with the computational setup. However, the model is also overly
simple and there are features in the simulation results that the model cannot
capture; still, by using the model as a starting point one can also learn where to
look for new and interesting behaviour.

(a) (b)

(c) (d)

Figure 5.2 Plots (a) & (b) show the MD simulated ring-down profiles for the second
flexural modes in 8.4 nm long (10,0) CNTs. In all cases the data is the
average of 10 separate simulations with differing initial conditions;
the data is plottedwith a broad line thickness chosen such that it encloses the
deviation of the averaged data. Plot (a) shows tubes with initial Tbg¼ 5 K
andTex¼ 50, 100, 150, 200, and 300K. Plot (b) show the attenuation profile
in tubes with initial Tex¼ 150 K, and Tbg¼ 5, 10, 50, 100, 150, 200, 400,
and 400 K. Plots (c) & (d) show trends in simulation profile of a closed,
damped harmonic oscillator (eqn (5.12)) when independently increasing
Tex, and Tbg, respectively.
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5.4.1 Mpemba-Like Behaviour

A consequence of simulating in the microcanonical ensemble is that the CNT is
a closed system; energy dissipated from the excited flexural mode accumulates
in the rest of the vibrational modes of the tube, raising Tbg. Increasing Tex

independently from Tbg changes the average temperature of the system and
thus one would expect a different attenuation profile. More remarkable is the
cooling of the excited mode in systems in which the same total energy,
Tt¼TbgþTex, but differing initial partitioning of this energy between the
flexural mode and the background (shown in Figure 5.3(a). Starting a simu-
lation further from equilibrium (that is with larger initial Tex/Tbg) causes the
system to reach equilibrium in a shorter time! We refer to this astounding, and
counterintuitive behaviour, as ‘‘Mpemba-like’’ in analogy with the Mpemba
effect72 in which it is observed that when hot water and cold water are put into a
freezer the hot water freezes first.viii

While the dissipation mechanisms active during the cooling of water are very
different from the damping within a CNT we will see that in both cases the
system is able to reach equilibrium faster because both systems contain a
hidden variable, and in both cases the cooling results in changes in the hidden
variable that do not follow a unique pathway.
Figure 5.3(b) shows the ring-down time for increasing initial Tex in

systems for which TexþTbg¼ 300 K. Two measures of the ring-down time
are plotted: the time taken for excitation to be damped to a fixed lower
threshold; and the interval over which the excitation is diminished by a set
fraction—both measures decrease the further one starts from equilibrium. As
with the Mpemba effect, relaxing faster to equilibrium the further one starts
from it can only occur if the cooling pathway is not unique, but instead
depends on the system’s initial conditions—as illustrated by the inset plot in
Figure 5.3(a).
From the ring-down profile of the simulated CNT resonator one can

compute the Q factor at any time t as QðtÞ ¼ �oEðtÞ=EðtÞ; where o is the

viiiThe Mpemba effect was and still is somewhat controversial. There are a number of differing
explanations for the phenomenon that range from the practical to the fundamental. An example
of the former is the hot water in the ice cube tray melts a layer of surface ice on the freezer shelf
thus making better thermal contact. Just one example of a fundamental explanation of the
Mpemba effect is that the cooling of the water is mediated by convection currents that have
inertia and momentum. Once established in a hot liquid—with a large driving force they are
maintained as the liquid cools. Cooling then depends on the average temperature T (which has no
memory) and the convective flow C (which is dependent on the liquid’s thermal history). The
convective flow C provides the history-dependent hidden variable. The Mpemba effect is also
controversial because of the manner in which it became popularised—through the observations
of a Tanzanian school by George Mpemba (although the effect had been commented on much
earlier by other natural philosophers, including Aristotle and Francis Bacon73)—and how it
seems to directly challenge intuitive scientific understanding. In fact the Mpemba effect makes no
challenge to established science or the scientific method, it only holds a mirror to the way that we
do science in prac tice and the barriers that we have for updating our personal intuitive scientific
understanding when we are presented with more evidence. A good discussion of the Mpemba
effect, and its history is given by Jeng.73
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frequency of the excited mode.ix Figure 5.3(c) shows the change in the Q factor
accompanying the attenuation of a CNT. The Q drops from close to 1900 by
more than 95% to 37 and then is seen to recover towards 1000 after 20 ps.
The origin of this huge suppression of the Q and its subsequent recovery can be
understood by using the projection algorithm to track how the energy popu-
lates the background modes once it has been dissipated from the flexural mode.
The evolution of the background population is shown in Figure 5.3(d). It can
clearly be seen that the energy goes first into low-frequency modes—close to the
frequency of the flexural mode—before dispersing across the full vibrational
spectrum of the CNT. This nonuniform filling of the background modes is due
to a small set of key ‘‘gateway modes’’ that act as strongly nonlinear channels
for dissipation. These gateway modes and the role that they play is examined in
more detail later in this section. However, without knowing how the gateway
modes work it can be seen that the nonequilibrium distribution of energy in the
background modes that they give rise to provides a hidden variable that is the
necessary ingredient in for Mpemba-like behaviour.
The very simple model in eqn (5.12) does not exhibit the Mpemba-like

behaviour that is observed in CNT’s simulations. Reducing the initial Tex/Tbg

ratio in the model has the effect of starting the attenuation from further along
the same universal ring-down pathway, and thus increasing the initial distance
from equilibrium always results in longer cooling time. Additionally, in this
model the Q-factor decreases monotonically in time and does not show the
recovery that is seen in Figure 5.3(c).
Armed with the insight from the nonuniform filling of the thermal background

gained from the mode projection (Figure 5.3(d)) one can construct a slightly more
sophisticated model of the CNT damping process. Rather than assuming that the
energy is dissipated into a single reservoir of backgroundmodes we can subdivide
the background into two. One subreservoir, called the low-frequency background,
is the set ofmodes that interact strongly (and nonlinearly) with the excited flexural
mode. The remainder of the modes that interact less strongly make up the other
thermal bath that is referred to as the high-frequency background. The strongly
interacting group is referred to as the low-frequency background because in
Figure 5.3(d) it can be seen that the modes that receive dissipated energy first have
in general lower frequencies—although it is important to note that the frequency
of the mode is of no importance for this model. The relaxation of this three-body
model is now governed by three heat dissipation rates: The power dissipated from
the excited mode into the low-frequency background, pex-l, power dissipated
from the flexural mode into the high-frequency background, pex-h, and the rate
of heat transfer between the low- and high-frequency backgrounds pl-h. To
correctly couple the three thermal reservoirs in a manner that reaches the correct
thermodynamic equilibrium a phenomenological form of the dissipation eqn
(5.11) is modified such that

ix In practice, this is done by fitting a smoothing spline to the data in order to minimize the fluc-
tuations in _EðtÞ:
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pa!bðtÞ ¼ �BabðTbÞ
Ta

Ca
� Tb

Cb

� �
Ctot; ð5:13Þ

where Ca and Ctot are specific heat of the individual reservoir a, and the total
specific heat of all the reservoirs combined. The quantity TaCtot/Ca then repre-
sents the temperature (that is the locally time averaged kinetic energy) of a mode
within reservoir a. Note that this is different from Ta that was defined to represent
the heat in the sets of modes in terms of its contribution to the
temperature of the system as a whole.
This model in eqn (5.13) is solved numerically using as an initial condition

that the temperature of the two background sets are the same. It is found that
the extra degree of freedom in the system afforded by the two background
reservoirs is sufficient to reproduce all of the features of the simulated CNT
ring-down data—including the observation of Mpemba-like behaviour, and the
recovery in Q. Figure 5.4(a) shows a relaxation profile of the model fit to the
CNT attenuation profile from Figure 5.3(c), for which the 3 linear dissipative
terms, one nonlinear dissipative term, and the number of modes in the low-
frequency background were used as fitting parameters. Figure 5.4(b) uses the
same model parameters as in (a) with differing Tex/Tbg ratios showing
Mpemba-like behaviour.
The model plotted in Figures 5.4(a) and (b) is intended to be illustrative rather

than predictive. It shows that there are two key ingredients that are needed in
order to observe the Mpemba-like behaviour seen in the CNTs: nonlinear dis-
sipation (caused by heating), and an internal degree of freedom (caused by het-
erogeneous heating of the background modes). For the fit in Figure 5.4(a) six
fitting parameters were used, which is a lot, and one must not read too much
meaning into them. There is, however, one parameter from which some insight
can be gained: the number ofmodes in the low-frequency background. The tail in
the ring-down profile occurs when the excited flexural mode comes into local

Figure 5.3 Plot (a) shows MD simulated total ring-down profiles (computed as
for Fig. 5.2(a) and (b)) for the simulations in which the total energy
TbgþTex¼ 300K but with different initial partitioning ratios, Tex/Tbg. As
with the Mpemba effect the mode cools faster if it starts hotter! The inset
plot shows the cooling curves shifted in time so that the more weakly
excited simulations commence on the cooling path for more strongly
excited simulations. It can be clearly seen that there is no universal cooling
trajectory. Total ring-down times plotted in (b), measured as the time
taken to decay to an excitation of 1.5 eV/atom (i.), and time to lose 88% of
initial energy (ii.). Plot (c) shows ring-down (solid line) overlaid with the
Q-factor (circles) for initial Tbg¼ 5K, Tex¼ 150K. The surface plot (b)
shows how the dissipated energy from this simulation is distributed over
the spectrum of the CNT’s background vibrational modes. The region of
rapid damping is marked by (ii.). It can clearly be seen that the dissipated
energy does not reach the high-frequency background modes until the end
of the period of anomalous dissipation.
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equilibriumwith the low-frequency background, and the initial height of this tail
in turn depends on the number of modes in this low frequency set—that is, the
number ofmodes that interact strongly with the excited flexural mode. To obtain
a goodfit to theCNT simulation results this numbermust be between about 3 and
10 that agrees well with the finding from the mode projection that there are a
small number of gateway modes that trigger rapid dissipation.
The Mpemba effect in the freezing of water is counterintuitive because one

assumes that as hot water has cooled down it passes thought the same state as
water that is initially cool. This is not the case. The rate of dissipation of heat
from the cooling water depends not on the average temperature of the
water but on a number of history-dependent hidden variables such as the
temperature gradient and convective circulation. While the detailed origins of
the Mpemba effect in water are not fully agreed upon it is clear that the effect
is possible because of internal degrees of freedom within the system that are
not described by the average temperature of the system. In this work it is

(a)

(b)

Figure 5.4 Attenuation profile predicted by the coupled dissipation model (eqn
(5.13)). Plot (a) show the model (thin line) with parameters crudely fit to
simulation data (thick line) for a CNT with initial Tbg¼ 100 K, and
Tex¼ 200 K. Plot (b) shows the model prediction (with the same fitting
parameters) for the simulation data plotted in Figure 5.3(a). It is clear that
the fit is far from perfect, however the major features remain. Most
importantly, the model reproduces the Mpemba-like behaviour.
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demonstrated that an abstraction of the same phenomena is possible in other
systems such as CNT resonators. It has been shown that: (1) the dissipation
results in the formation a history-dependent athermal filling of vibrational
modes that is not described by the average temperature, and (2) the dis-
sipative state of the system is extremely sensitive to this athermal phonon
population.

5.4.2 Gateway Modes

Having established the importance of gateway modes for Mpemba-like cooling
it is worth examining the role that the gateway modes play. Again this can be
done by taking advantage of the experiments being performed in silico.
Using the mode projection it is possible to identify which of the low-frequency

modes were receiving the dissipated energy and within this subset of low-fre-
quencymodes it is found that there are two ‘‘gatewaymodes’’ that act as strongly
nonlinear channels for dissipation. For the 8.4 nm (10,0) CNT these gateway
modes are: a third flexural mode that is coplanar with the excited mode; and the
fundamental bendingmode, out-of-plane with the excitation. The energy in both
of these modes, and the remainder of the energy in the background are shown in
Figure 5.5(a). Once the gatewaymodes accumulate a little bit of energy they open
efficient channels for rapid dissipation from the excited flexural mode. In the
simulation it is possible to externally add a small excitation to a gateway mode.
Exciting either of the gateway modes by as little as 1.5 K triggers the immediate
onset of strong dissipation and suppression of theQ factor. Similarly, exciting the
other low-frequency recipient modes had no effect.
That the gateway modes are the first and third flexural modes of the periodic

CNT arouses suspicion that the observed gateway behaviour in the MD
simulations is simply an artifact of the limited system size. It is necessary then
to conduct two tests of the size dependence. The most trivial test is to repeat the
study for CNTs with increasing periodic repeat distance to establish that
gateway-mode dissipation is unique to neither (10,0) nor 4.2 nm periodically
repeated tubes. A second, and more insightful, test of the size dependence on
the gateway modes is to simulate a longer CNT in which the excited flexural
mode still exists, but which is incommensurate with the wavelength of the two
gateway modes.
Ring-down of the equivalent 1.5 THz flexural modes of 8.4 nm tubes was

simulated in tubes 1.5, 2 and 3 times as long.x The attenuation of these modes is
plotted in Figure 5.5(c). Both of the gateway modes in the 8.4-nm tube are
incommensurate with the 12.5-nm tube and they do not exist. In this inter-
mediate-sized tube the system finds a different but less-effective gateway mode
(a flexural mode with wavelength 6.3 nm) to dissipate the energy. The longer
16.7-nm tube possesses all the vibrational modes of the 8.4-nm tube in addition
to a further 2400 modes. However, despite the additional modes the gateway

xThat is, modes with the same frequency as the third, fourth and sixth flexural modes of these tubes,
respectively.
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modes of the 8.4-nm tube are the preferred path for dissipation. The longest
25.1-nm tube possesses all of the modes of the 12.5-nm and 16.7-nm tubes
but the gateway modes of the 8.4-nm tube become active first. This hints that
there could be many modes that can perform the gateway role; however, those
that are most effective at it do so first, eliminating the need for other modes
to act as dissipation gateways. Importantly, these show that the action of
gateway modes is not an artifact of the computational cell size but does depend
on which gateway modes are permitted by the periodic boundaries of the
computational cell.
It is now possible to pull together the understanding of the Mpemba-like

behaviour with the insight into the gateway modes into a cartoon model of the
dissipation process in the CNT, shown schematically in Figure 5.5(b). Com-
puter ‘‘experiments’’ were performed of the intrinsic dissipation in CNTs. For
reasons of computational expedience, dissipation was observed during ring-
down rather than under the experimentally measured conditions of constant

Figure 5.5 Plot (a) shows the energy in the excited flexural mode, the high and low
frequency gateway modes, and the remainder of the background modes,
during ring-down. Graphic (b) shows a schematic representation of the
dissipation pathway and the role of the gateway modes in the CNT. The
energy in the excited mode, the gateway modes, and the remaining
background is represented by the filling of three receptacles, with the
thickness of the arrows indicating the rate of energy transfer between
receptacles. Plot (c) shows the ring-down of the 1.5 THz flexural mode in
tubes with 8.4, 12.5, 16.7, and 25.1 nm periodic repeat distances.

136 Chapter 5



driving, however this approach revealed the formation of an athermal popu-
lation of background phonons and a concomitant change in quality factor.
The consequence of these observations for a real NEMS device could be of

great practical importance. A real CNT resonator under vacuum can only lose
heat through its clamped ends. It is therefore very likely that under conditions
of constant driving the occupancy of phonon modes will be far from the
equilibrium distribution, and that this will in some way impact the qualify
factor of the tube. The implication is two-fold: (1) In order to properly
understand the Q factor of driven systems one must consider the whole phonon
population, (2) by understanding the full phonon population distribution we
can gain strategies for externally changing it and thus can engineer the dis-
sipative properties of the system. Moreover, if it is found that an athermal
phonon affects the dissipative properties of other systems besides CNTs these
issues will also be relevant in other NEMS devices. If this is the case then the
gateway mechanism provides one with several avenues for improving Q factor.
Resonator lengths could be selected carefully so as to exclude important
gateway modes, or tubes could be decorated with other nanoparticles in order
to shift the frequency of gateway modes. Alternatively, gateway modes could be
identified and externally cooled (such as by laser cooling33 or quantum back
action74). The phenomenon of triggering rapid damping externally by adding
more energy could find important applications such as in the ability to mini-
mize unwanted vibrations in CNTs. It could be used for actively blocking heat
flow along CNTs and providing a way to mechanically filter thermal transport.

5.5 Example: Heat Flow Between Nanoscale

Materials; Exploiting Frequency-Selective

Thermal Transport for Chemical Sensing

At the beginning of this chapter it was discussed that exploiting far-from-
equilibrium conditions in nanoscale systems can permit us to take advantage of
heat that is athermally distributed across frequency—that is, using the prop-
erties of a select frequency band. In the survey of the computational ‘‘char-
acterisation tools’’ the example was given of frequency-selective thermal
transport between weakly coupled objects. In this case study, it is shown how
this concept could be applied in a new approach to chemical sensing that could
be both highly sensitive and label-free. Simulation in combination with
numerical characterisation tools are used to provide a proof-of-concept, and
then to develop guidelines to help experimental researched in the development
of the method in practice.
Current strategies for sensing hazardous airborne chemicals, such as pollu-

tants or chemical-warfare agents, must compromise between focused sensitivity
and breadth of vigilance. Mechanically based chemical methods provide one
avenue to ultrasensitive detection. These methods detect binding of analyte to a
resonator by the accompanying change in surface stress or resonant frequency.
The sensitivity of this method increases inversely to the lengths scale of the

137Simulating Thermomechanical Phenomena of Nanoscale Systems



resonator, with nanoscale resonators able to detect an analyte in parts per
trillion. The specificity of the method, however, is provided by the functiona-
lised coating—and thus the flexibility of the approach to a rapidly evolving
watch-list of chemical threats depends on how rapidly one can develop newly
targeted chemical functonalisation. In contrast, spectroscopic methods for
chemical sensing are ‘‘label-free’’, that is, they require no preconditioning in
order to identify a given analyte. Unfortunately, they can only achieve satis-
factory sensitivity by concentrating and segregating the analyte with a chro-
matography step.
As a route to chemical sensing that provides both sensitivity and label-free

selectivity it has been proposed to exploit frequency-selecting thermal transport
that can occur across weak nanoscale interfaces to probe analyte molecules in a
way that is both mechanical and spectroscopic in nature. The method, referred
to as nanomechanical spectroscopy (NRS),75 uses an array of tuned nano-
mechanical resonators that become excited in the presence of a hot analyte with
a particular vibrational frequency. (The graphics (a) and (b) in Figure 5.6
illustrate the NRS concept and its comparison to optical spectroscopy.) Taken
together, the array of resonators can be likened to a stringed musical instru-
ment; the vibrational spectrum of each analyte strikes a unique chord that can
be used to identify it. Sensing the analyte is then reduced to resolving the
relative excitations of the nanoresonator array. This task of ‘‘listening’’ to the
strings is itself nontrivial; it requires being able to measure an excitation in a
single vibrational mode of an ultrahigh-frequency resonators, with nanosecond
resolution.

Figure 5.6 A schematic comparison of NRS with traditional optical spectroscopy.
Panel (a) depicts in very general terms an optical spectroscopy method, in
which the vibrational modes of an analyte are interrogated with a laser.
Electron–phonon coupling transduces the illuminating radiation and the
measured spectrum that results is used to identify the analyte. Panel (b)
depicts the proposed NRS method in which a heated analyte interacts
directly with a series of nanomechanical probe resonators. If a probe is in
resonance with a vibrational mode in the analyte, then vibrational energy
is exchanged; thus, the analyte excites a unique chord in the array of
probes that can be used to identify it.
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In order to demonstrate the NRS principle we turn again to an idealised test
system that can be easily simulated with MD and that can be analysed
unambiguously. The simplest possible analyte is used, namely an H2 dimer.
This has only one vibrational mode—the bond stretch—and the frequency of
this mode is tuned by making the H atoms artificially heavy. For the probe
resonator a (10,0) single-walled (and periodically repeated) CNT is used. This
allows us to efficiently bring all of the characterisation apparatus described
above to bear on this problem. To start, the dimer is positioned randomly at the
CNT surface and given a large (B1100K) excitation of its bond stretch (as
shown in Figure 5.7). The CNT is initially at absolute zero. (Classical simu-
lation of this system setup is justified by the same arguments used for the case of
two parallel CNTs above). The system is simulated in the microcanonical
ensemble. The analyte (dimer) and probe (CNT) are weakly coupled via the van
der Waals forces, and this mediates the transfer of energy from the dimer to the
tube. The weak binding also permits a slow bouncing oscillation of the dimer
on the tube surface, causing the dimer to migrate randomly along the tube.
Figure 5.8 shows the evolution of the spectrum of vibrations excited in a CNT
that is in contact with a dimer tuned to oscillate at 10THz.
It can clearly be seen from Figure 5.8 that for a 10-THz analyte most of the

vibrational energy that is transferred to the CNT occupies modes with fre-
quencies closest to 10THz, i.e. modes in resonance with the dimer. This
demonstrates that information about the vibrational frequency of the analyte is
communicated to the probe, and remains localised in frequency for an
experimentally measurable duration. The dissipation of energy in the excited
mode in the tube is small, as the tube was initially at 0K. Simulations in which
the tube has an initial background temperature show the same qualitative
behaviour although with increased dissipation from the resonantly excited

Figure 5.7 Typical simulation setup. Panels (a) and (b) show respectively the initial
and final configurations of the system. In panel (b) the internal displace-
ments within the CNT have been artificially amplified to show that it is a
flexural mode in the tube that has been primarily activated.
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mode. An interesting feature in Figure 5.8(a) is the small excitation of modes
with twice the frequency of the dimer. This arises from the strong anharmo-
nicity in the van der Waals interaction rectifying (frequency doubling) the force
that the dimer exerts on the tube.
Figure 5.8(b) shows the partitioning of the total thermal energy in the system

between the dimer’s stretch mode, and the resonant and off-resonant modes in
the CNT. It can be seen that in the 10 ns simulated less than half of the energy
in the dimer’s stretch has transferred to the CNT, and very little energy is
transmitted into the dimer’s rotational and translational modes (due to the
atomic mass of the dimer being relatively large). The set of resonant modes in
the CNT was chosen to be those within 0.4 THz of the dimer frequency—a
window just wide enough to enclose the full resonant ridge along
10 THz in Figure 5.8(a). The plotted ‘‘resonant signal’’ is the summed energy of
the modes in this window—effectively a narrow-bandpass filtering of the full
vibrational spectrum. The inset plot shows individual heating trajectories of the
resonant modes over the first nanosecond for 15 of the simulations. It can be
seen that there is a wide distribution in the trajectories but also that each
individual trajectory follows a rapidly fluctuating stochastic pathway in which
heat is both added and removed randomly, with only a gradual accumulation
of energy.
Averaging a portion of the spectrum in Figure 5.8(a) at early times between

90–100 ps gives a measure of the response of the CNT resonance probe to a
10-THz analyte vibration that can be compared to the response due to analytes
of different frequencies. By repeating the simulations with dimers of different
frequencies one obtains a map of the response of the probe to analytes spanning

Figure 5.8 Mean excitation of CNT due to interaction with a single dimer vibrating at
10THz. The plots are the average of 29 simulations. Plot (a) shows the full
excitation spectrum in the CNT. A clear resonant peak is visible at
10THz. Plot (b) shows the partitioning of the thermal energy between the
stretch mode of the analyte, and the resonant modes and background
models in the CNT. The inset plot shows the first nanosecond of resonant
signal for the first 15 individual simulations (thin lines) with the mean
plotted in bold. It can be seen that the trajectories are stochastic, with
energy repeatedly exchanging back and forth between the dimer and CNT.
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its entire frequency range, the first 20THz of which is shown in Figure 5.9. The
fact that the CNT response surface is excited primarily along the diagonal in
this plot shows that the excitation of the probe remains resonant—that is,
sharply localised at the dimer frequency—for all analyte frequencies. This result
represents a critical proof of concept important for a functional NRS: it ensures
that there is a one-to-one mapping between the frequency of the measured
probe signal and the vibration in the analyte that caused it. There are no strong
off-resonant signals that could cause a false positive. Moreover, the presence of
the analyte does not strongly alter the frequency of the modes of the CNT—
which would blur the frequency specificity of the probe. Unlike mass-sensing
approaches that rely on the analyte binding causing a frequency shift in the
resonator, here the analyte is only very weakly bound to the probe through the
van der Waals interaction, which vitiates the effects of mass loading.
Having established that the principle of the NRS method works one can

examine the simulations more closely to glean information that will help
optimize the NRS device performance. First, the simulations give a picture of
the analyte moving randomly on the surface of the CNT rapidly exchanging
energy back and forth with the CNT. We can use this picture as the basis for a
simple mathematical model of stochastic energy transfer. This model predicts
that one can maximize the rate of energy transfer and narrow the resonant
frequency band if one can engineer the strength of interaction between the
dimer and CNT and the frequency of their bouncing. Secondly, in Figure 5.8(b)
it can be seen that both the resonant and off-resonant modes of the CNT
become excited. An obvious question is: are the background modes of the CNT
excited only due to dissipation from the resonant modes or are they also excited
directly by the analyte (and if so is there anything that we can do to prevent it?).
Here, we can take advantage of the noise due to the constant random shuttling
of energy. It is found that the noise in the analyte and the noise in the back-
ground modes have very different frequency components. Moreover, it is found
that the noise in the resonant mode is closely anticorrelated to both the analyte
and background, but there is no correlation between the analyte’s noise and the
background modes. In other words, the resonant channel for energy transfer is
extremely efficient and almost all the energy transferred into the CNT is
mediated by resonant exchange—there is little improvement to be made here.
Finally it can be seen from the plot in Figure 5.9 that the resonant signal
measured in the CNT is stronger for lower frequencies. The CNT is effectively
self-filtering for the low-frequency signal. This property can be used advanta-
geously and can help set some guidelines for the realisation of a working NRS
device. The most sensitive sampling frequency of each probe resonator is its
lowest-frequency mode; thus one should design the spectroscope so that one
can monitor the occupation of this mode in each of the probes in the array. This
one guideline vastly simplifies the process of selecting nanoscale objects to act
as probe resonators, by choosing families of objects with controllable geome-
tries that change the fundamental frequency. Several examples of this are
fullerenes where the radius of the fullerene determines the frequency of its
breathing and flattening modes or the fundamental mode of a suspended or
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Figure 5.9 Scan of the excitation response of a CNT nanomechanical resonance
probe to molecular vibrations with frequencies over the entire frequency
range of the CNT. Only the first 20THz of the scan are plotted as the
response of the probe at higher frequencies was negligible. The response
spectrum of the probe for each analyte frequency is an average of the
excited spectrum between 90 to 100 ps of the simulation.

Figure 5.10 Mode frequency for families of nanoscale objects. The data plotted at
high frequencies show the frequency of the lowest frequency mode and
the breathing mode for fullerenes as a function of their diameter. The
dashed line shows the frequency of the radial breathing mode for CNTs as a
function of their diameter (with data plotted using Eklund and Dresselhaus
fitting formulao [cm–1]¼ 244/d2 [nm]76). The shaded region plotted at lower
frequencies shows the frequencies of the lowest frequency flexural mode of a
singlewalledCNTs as a functionof length for a range of stable chiralities and
diameters. The mode frequencies for both the fullerenes and CNTs were
calculated using the REBO potential.
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cantilevered nanowire or nanotube, determined by length and radius. By way of
example, the lowest-frequency modes for fullerenes and the flexural modes
of CNTs are plotted as a function of their tuning dimension in Figure 5.10. It
can be seen that together these modes span nearly 3 decades in frequency
space and thus, if used as nanomechanical resonance probes for NRS, could
potentially permit detection of a wide range of molecular vibrations.
In this case study we have shown that lots of subtle information can be

learned from MD simulations of even the simplest systems. However, we must
beware not to push the interpretation too far. We have shown that the resonant
effect is significant, but in the simulation the transfer of energy is continuous not
by discrete jumps as is the case for a quantum system. In this sense we have
made progress to the extent possible for a classical MD approach, but there is
much that can be learned if we could correctly simulate quantised energy
transfer. There is much work still to be done in this field, and much to be
understood by doing so.

5.6 Conclusions and Outlook

In this chapter we have explored different approaches to simulating thermal
behavior in nanoscale systems, and the relationship between simulation and
direct computation. The chapter started with a survey of experimentally
demonstrated thermal properties that can be found in nanoscale systems.
Making use of nanoscale structured systems has the potential to radically alter
the way that we both use, and think about heat. The fundamentals of thermo-
dynamics were solved during the industrial revolution in the era of the steam
engine but heat remains as technologically important now as it was then.
Moving to the nanoscale allows us to control heat in unprecedented ways,
permitting engineering of phonon band structure, and manipulation of struc-
ture at the length scale of the phonon mean free path. Achieving the full
potential of heat at the nanoscale requires not only devising novel ways of
exploiting heat but also advancing our fundamental understanding of thermal
energy in nanoscale systems, and developing the computational tools required
to study it. As we hope this chapter has demonstrated, this is an exciting field, in
which there is much work to be done.
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