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Molecular dynamics simulations are employed to elucidate the important factors in mechanical energy
transfer between carbon nanotubes. Our calculations show that sharp resonance effects allow for near
complete and highly efficient energy transfer. In addition, the weak coupling between two nanotubes sets
the time scale for the energy transfer. The simulations provide the mechanistic basis for a theoretical
description of lattice vibration mediated heat flow in nanoscale materials.
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Understanding thermal transport in nanoscale materials
is of profound importance for the thermal management of
the next generation of microelectronic, photovoltaic, and
thermoelectric devices. Carbon nanotubes (CNTs) are en-
dowed with a variety of unusual vibrational properties that
show potential for thermal management applications [1–
3]. Thermal transport in single-walled carbon nanotubes
(SWNTs) has been predicted to be ballistic in tubes of
moderate length [4] and at low temperatures the thermal
conductance is quantized [5]. Although most experimental
work has focused on understanding heat transfer along the
axis of a nanotube, recent experiments [6,7] indicate that
thermal conductance in ropes and mats of SWNTs is
limited by the transfer of energy between tubes.

In this Letter, molecular dynamics (MD) simulations are
employed to elucidate the mechanisms of vibrational en-
ergy transfer between nanoscale objects. Our calculations
show that energy is exchanged between two nanotubes
efficiently with modes in resonance, and that a strong
relationship exists between the rate of kinetic energy trans-
fer from one tube to another and the strength of the
intertube van der Waals (vdW) interaction. This depen-
dence establishes two distinct time scales that play a
fundamental role in nanomechanical energy transfer. Our
simulations illustrate a third critical time scale set by a
nonlinear mechanism of internal scattering. We combine
these factors to form the basis of a model of heat transfer
between nanoscale objects.

Classical MD simulations were performed using the
reactive empirical bond order potential [8] for nearest-
neighbor bonds, and a Lennard-Jones potential for longer
range vdW bonding. As a prototypical system to study heat
transfer at the nanoscale, two single-walled CNTs were
arranged parallel to each other with periodic conditions
imposed along the tube axes. In contrast to previous MD
studies of heat transfer [2,9,10] we focus on the transfer of
energy between stationary vibrational modes rather than
transport over distance by traveling wave packets [11]. The
general procedure for a typical simulation was as follows:
first the coordinates of the tubes (and the width of
the computational cell) were optimized to better than

10�5 eV= �A. Second, specific phonon modes in one of the
tubes (referred to as tube A) were displaced, while the other
tube (B) was held fixed. In all cases simulations were
performed of �10; 0� tubes each containing 400 atoms in
the unit cell (10 turns of the tube [14] ). The selected modes
were excited with an energy equivalent to 18 K.
Simulations were conducted in the microcanonical en-
semble, and the system was evolved with a predictor-
corrector integration scheme using a time step of 0.2 fs.

If the breathing mode of tube A is initially excited, the
transfer of energy between tubes can be seen directly from
the oscillation of the tube radii, shown in Fig. 1.
Immediately after it is released the radius of tube A oscil-
lates with frequency 8.6 THz (in good agreement with
ab initio calculations [15], indicating that the tube is in
the harmonic regime). Over a longer time scale, the am-
plitude of the breathing oscillation in tube A decays while
the breathing mode in tube B becomes active until around
8.7 ps (or 75 breathing oscillations), at which point tube A
has transferred almost all of its kinetic energy into the
breathing mode of tube B. One might expect this pattern
of resonant energy transfer between the breathing modes to
continue with the energy transferring back to tube A;
however, after 9 ps a more complicated behavior occurs
in which other vibrational modes become excited.
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FIG. 1 (color). Change in the radius of tubes A (red) and B
(blue) as a function of time.
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In order to understand the mechanism for energy ex-
change as well as the energy scattering at 9 ps, we have
computed the specific energy distribution dynamically
among the phonon modes in each tube, shown in Fig. 2.
The energy, Ei�t�, in the ith mode at time t is given by the
projection of the atomic displacements and velocities onto
the ith eigenmode of a CNT at equilibrium,

 Ei�t� �
�i
2
�u�t� � �i�

2 �
m
2
�v�t� � �i�

2: (1)

The two terms are the potential and kinetic energy of the
mode where m is mass, and v�t� and u�t� are the (phase
space) velocity of the tube and its displacement from
equilibrium, respectively. The set of unit eigenvectors,
�i, and the stiffness of the tube, �i, along this direction
in phase space were determined a priori using the frozen
phonon method.

While the energy transfer between breathing modes is
clearly evident in Fig. 2, it can be seen that other phonon
modes are excited throughout the simulation. In particular,
modes at 1.2, 3.5, and 11.7 THz are excited intermittently
from the start, and later modes at 4.3 THz become active.
Additionally, the tube-tube interaction permits an intertube
oscillation with a period of 1.6 ps (which is 1.9 times
slower than the softest intratube mode). The activity of
this coupling is indicated in Fig. 2 by the separation of the
tubes’ centers of mass, plotted along the time axis. The
intertube oscillation is highly nonlinear with motion simi-
lar to a bouncing rubber ball: as the tubes come together the
hard repulsive part of the vdW interaction causes the tubes
to flatten elastically. The elastic energy associated with this
deformation shows up in Fig. 2 as the periodic lumps in
step with the tube oscillation at frequencies 1.2, 3.5, and
11.7 THz which correspond to the twofold and threefold
symmetric radial modes and a mirror-symmetric cyclops
mode [16].

As a rudimentary model of the energy exchange between
tubes we consider the interaction between pairs of modes
in each tube independently as two weakly coupled har-
monic oscillators with equations of motion,

 mi �ui�t� � ��iui�t� � �c�u3�i�t� � ui�t��: (2)

Here mi, �i, and ui are the mass, stiffness, and displace-
ment of the ith oscillator (the identifier i can be 1 or 2), the
over dots represent the time derivative, and �c is the stiff-
ness of the coupling. The resonant exchange between the
breathing modes can be represented by considering the
case where the two oscillators are identical. This composite
system has two eigenmodes: one in which both oscillators
move in the same direction with angular frequency��������������
�1=m1

p
, and the other in which the oscillators move in

opposite directions with angular frequency�������������������������������
��1 � 2�c�=m1

p
. As these two hybrid modes beat in and

out of phase the oscillators are alternately stilled and
excited, and in the case that the amplitudes of the eigen-
modes are equal, all of the vibrational energy is shuttled

from one oscillator to the other. Similarly, the (almost)
complete reversible transfer of energy observed in our
MD simulations occurs because the initial configuration
of the tubes is equally composed of both hybridizations of
the two breathing modes.

In this simple model the time taken for the energy to
transfer from one oscillator to the other is one half of the
beat period, !beat, of the two normal (hybrid) modes of the
composite system. This gives the ratio of the energy trans-
fer time relative to the oscillator period of �2�

���������������
1� 2�
p

�
1���1, where � � �c

�1
is the dimensionless coupling

strength. From this analysis we expect modes with lower
frequencies to exchange energy more rapidly, a trend con-
sistent with the transmission coefficient of phonons across
an acoustic impedance mismatched boundary [17,18].
Intuitively, this makes sense as lower frequency modes
experience larger deformations than higher frequency

 

0

5

10

15 0

5

10

15

20

0

5

10
Frequency THz

Ti
m

e
ps

Energy Density arb. u.

a

0

5

10

15 0

5

10

15

20

0

5

10
Frequency THz

Ti
m

e
ps

Energy Density arb. u.

b

FIG. 2 (color). Temporal evolution of the distribution of en-
ergy [Eq. (1)] in vibrational modes of tubes A (top) and B
(bottom). The tube-tube separation is plotted (in arbitrary units)
along the time axis.
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modes with the same energy and so would interact more
strongly; in turn, this implies that contacting bodies of
different temperatures exchange energy fastest through
the low frequency modes.

The results shown in Figs. 1 and 2 demonstrate a highly
efficient energy transfer from the radial breathing mode of
one tube into that of another identical tube (i.e., the modes
are perfectly in resonance). By simulating the same CNT
system but altering the mass of the atoms in tube B we
explore the sharpness of this resonant behavior. Fig. 3(a)
shows how the peak fraction of energy transferred into the
breathing mode of tube B in the first 8.7 ps (qmax) changes
as its frequency is varied. The peak is narrow with a width
at half maximum of around 2% (i.e., 	5 wave numbers),
implying that for the breathing mode adjacent tubes will
only interact resonantly if their radii differ by less than 2%.
In the simple coupled oscillator model the transfer effi-
ciency is obtained from the ratio of the maximum trans-
ferable energy to the total energy in the system. For small
coupling � this shows a peak width that goes as 	2�. An
excellent fit to the central peaks in Fig. 3 is found for � �
0:008, in good agreement with the prediction from the
energy transfer time.

The stiffness of the coupling between the ith and jth
modes of the two tubes is the change in the force felt by the
jth mode of one tube caused by the displacement of the ith
mode in the other tube. The strength of the coupling
depends on the projection of the intertube force onto the
modes of the contacting bodies, and thus is sensitive to the
geometry of the participating modes. While heat flow
between contacting bulk solids must be channeled through
surface-localized modes, all the modes of single-walled
CNTs are by definition surface modes, and so in principal
the total (vibrational) specific heat of the tube has a direct
path for exchange between tubes. Coupling is stronger for
modes with radial displacements than for modes with
tangential or longitudinal displacements. Figure 3(b) dem-
onstrates that as the mass of the atoms in tube B is changed
to bring its fourfold radial mode into resonance with tube
A’s breathing mode, the coupling is sufficient to allow
significant exchange of energy. The importance of radial

modes, in conjunction with the sharp resonant frequency
dependence, implies that in a composite nanomechanical
system, the normal modes of the constitutive objects will
only interact with the few modes in the adjoining objects
that are close in frequency and share geometrical overlap.
This justifies the assumption inherent in the simple oscil-
lator model that coupling between pairs of modes may be
considered individually.

Striking in Fig. 3 are the satellite peaks in qmax that
bracket the resonant peaks. Here tube A’s breathing mode
excites modes with which it is not in resonance. The origin
of this effect is the intertube bounce. In their equilibrium
configuration the tubes are distorted by the vdW interac-
tion. As the tube spacing vacillates, this distortion changes,
modulating the coupling stiffness, �c, at the frequency of
the tube-tube vibration, !tt. Evidence of this is seen in
Fig. 2 where the resulting fluctuation in the energy transfer
rate leaves ripples (in step with the intertube bounce) in the
breathing component of the spectrum. Including the first
Fourier component of the bounce in the coupling so that
�c � h�ci � k1 cos�!ttt� in Eq. (2) gives terms with the
form k1 cos��!i 
!tt�t�. As changing the mass of tube B
also changes !tt, the satellite peaks are not symmetrically
positioned. Accounting for this, the model predicts the first
satellites to appear at frequencies of 8.0 and 9.3 THz for the
breathing mode, and 7.9 and 9.4 THz for the fourfold
mode, which are in good agreement with the MD results.

We now examine the origin of the sudden scattering of
energy out of the breathing mode at roughly 9 ps, as shown
in Figs. 1 and 2. Specifically, the breathing mode in tube B
transfers its energy into the four degenerate modes with
frequency closest to one half that of the breathing mode—
which then transfers it back again. This exchange is a
resonant anharmonic effect; the asymmetry of the breath-
ing mode permits it and the half-frequency modes (which
are symmetric) to ‘‘talk’’ to each other resonantly. This
half-frequency exchange is observed for a single tube in
isolation and the period of energy exchange decreases with
increasing total energy in the mode pair. Resonant anhar-
monic exchange of energy can occur between any pair of
modes whose frequencies differ by a factor of 2, provided
the high frequency mode is asymmetric (breaks parity) and
the low frequency mode is not. Hence, the breathing mode
does not exchange energy with the double frequency
modes for this system.

In Fig. 2 it can be seen that once the half-frequency
modes are excited in tube B, they transfer their energy
resonantly with the equivalent modes in tube A. This hints
at the fundamental origin for the dissipation of vibrational
energy in nanomechanical systems. Although the transfer
mechanisms discussed in this work are reversible, energy is
redistributed irreversibly by the continued branching of the
energy pathway. We can combine the energy transfer
mechanisms elucidated by the MD study into a picture of
heat flow between two nanoscale objects with different
thermal energies. In these small systems the macroscopic
description of heat flux by a gas of traveling wave packets
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FIG. 3. Transfer efficiency (qmax, see text) of the vibrational
energy from the breathing mode of tube A into (a) the breathing
mode and (b) the fourfold symmetric radial mode of tube B. The
frequency of the modes in tube B are varied by altering the mass
of its atoms.
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is not appropriate. Instead, we assume pairs of resonant
modes to exchange energy deterministically (according to
the coupled oscillator model) over the time interval �s
between internal scattering events that disturb these modes.
Averaging over all trajectories of the system, and assuming
�s!beat � 1, gives the total rate of heat flow between tubes
as

 

_Q � �
X

i

�s;i!2
beat;i�qi: (3)

The sum is performed over all resonant pairs of modes
between tubes and �qi is the difference in the energy
between the pair, which for small thermal gradients may
be approximated by the Bose distribution. If �s is assumed
constant then the rate of exchange of heat depends on the
square of the beat frequency of the coupled resonant pair,
which in turn is dependent on the geometry of the coupling.
A first order estimate for the beat frequency for the tubes
considered in this work is obtained by assuming that �c;i �
�br��2

i , where �i is the proportion of the motion of the ith
mode that is in a radial direction and �br is the stiffness of
the breathing mode. The largest contribution to energy
transfer is made by the lowest frequency tube flattening
mode, and we can define the ‘‘transmittance,’’ ri �
�!beat;i=!beat;max�

2, relative to that for the flattening
mode. Plotting ri on a log-log scale (Fig. 4) reveals an
inverse squared dependence on frequency. Furthermore,
the total transmittance of all the modes combined is only
	7:5 times that of the most efficiently transmitting mode,
indicating that the bulk of the energy is transferred through
a handful of key modes.

The energy transfer mechanisms described in this Letter,
when considered together, give a picture of diffusionlike
energy dissipation in composite nanomechanical systems.
The findings from MD simulations are used to formulate a
theoretical framework for describing nanoscale thermal
transport. Rather than considering scattering of phonon
wave packets (as with Boltzmann transport theory) the
dissipation of an athermally populated phonon distribution

and the transport of heat proceeds by exchange of energy
between localized vibrational modes. As the options for
energy transfer with other modes are limited at the nano-
scale, the evolution of energy distribution (in both fre-
quency and space) is similar to diffusion on a lattice.
This model of nanoscale heat flow can be used to guide
the engineering of new materials with novel thermal prop-
erties, for example, in understanding the thermal conduc-
tion percolation transition in nanotube composites and heat
flow in nanoscale powders and fluid suspensions.
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