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Irreversible island growth in the presence of anisotropic surface diffusion with long jumps
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Kinetic Monte Carlo (KMC) simulations are used to investigate the dynamics of island growth during
submonolayer epitaxy in the presence of anisotropic surface diffusion, and the influence of a recently hypoth-
esized crowdion diffusion mechanism. An existing rate equation mean-field analysis of island growth is ex-
tended to include anisotropic diffusion. The mean-field analysis is found to be at odds with results from KMC
simulations indicating that the details of the surface diffusion mechanism influence the nucleation rate. It is
found that anisotropy in adatom hopping reduces the density of stable islands. It is also found that although the
shape of the island size distribution is sensitive to island relaxation processes, it is not discernibly affected by

hopping anisotropy with ratios D,,/D,, up to 16.
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I. INTRODUCTION

In the last few decades the understanding of nucleation
and growth of islands during the early stages of thin film
deposition processes has improved dramatically. While the
technological importance of film growth is manifest, this
process is only one example of a whole set of aggregation
phenomena that includes the formation of snow flakes, set-
ting of custard, and swelling of nuclear reactors. A general
description of aggregation processes using a system of
coupled rate equations was formulated by von Smolu-
chowski in 1916." The particular problem of irreversible
nucleation and growth of thin films (i.e., where dimers are
the smallest stable clusters) has attracted particular interest in
recent years because the process can be represented by the
simplest nontrivial form of von Smoluchowski’s rate equa-
tions, and more importantly, because theoretical and numeri-
cal descriptions of film nucleation can be tested directly by
detailed scanning tunneling microscopy (STM) experiments.
Thus the relatively simple problem of film growth provides a
good model system for understanding more general aggrega-
tion phenomena.

When a metal on metal epitaxial film is grown by physical
vapor deposition (PVD) atoms arrive at the substrate surface
individually and move around on it randomly. Initially the
concentration of lone atoms rises. The free energy of this sea
of adatoms is reduced by the aggregation of monomers to
form an archipelago of adatom clusters or “islands.” Once
these clusters have been nucleated, additional atoms arriving
at the surface are more likely to encounter an island than
another diffusing monomer. Thus, existing islands grow with
little further nucleation of new islands. Eventually these is-
lands coalesce and a contiguous film is formed. The kinetics
of this process are limited by the time taken for diffusing
monomers to collide with other monomers or stable and rela-
tively immobile islands.

In the precoalescent regime of two-dimensional film
growth the mean number density of stable islands, (n,), and
the distribution of island sizes are observed to exhibit scaling
behavior over a wide range of materials systems and growth
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conditions.>” The probability, P(s, 6), that at a surface cov-
erage of # any atom chosen at random resides in an island of
s atoms is defined to be

s(n,)
> slny

where (n,) is the mean density of islands containing s atoms.
It is found that P(s, 6) obeys the scaling relation

P(s,0) = (1)

_ -l S
P(s,0) =5 (0)g<s_(0)>, (2)
where g(z) is a universal function that depends on the critical
cluster size i (clusters of i+ 1 atoms do not dissociate).® The
scaling arises from the correlated way in which Voronoi cells
around growing islands are subdivided by further nucleation
events.” The distribution, g(z), is narrower for larger critical
island sizes, because the nucleation probability of a new is-
land becomes more sensitive to the local monomer density.®

Villain et al.? proposed that the mean density of stable
islands scales with the ratio of flux to the diffusion coeffi-

cient, that is
D\ X
~=], 3
w~(2) G)

where D is the diffusion coefficient and F is the deposition
flux. The scaling exponent, y, is found to vary from i to %
For the case where the critical cluster size, i=1, Evans and
Bartelt” find that X:% and i for isotropic and infinitely an-
isotropic (one-dimensional) diffusion, respectively. While
when i=2 they find X:% and % Implicit in these calculations
is the idea that the density of stable islands depends on the
rate of nucleation of islands alone (islands cannot move).
Further it implies that for a given class of growth (i=1, i
=2, etc.) the nucleation rate evolves with the total surface
coverage in some universal way. This scaling form is signifi-
cant: the island density is a property that can be easily mea-
sured and the scaling relation offers a straightforward way of
measuring surface diffusion coefficients.'”
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The existence of scaling behavior in a wide range of ep-
itaxial systems suggests that the nucleation and growth of
films is to some extent insensitive to the details of how ada-
toms diffuse on a surface, and as a result much of the analy-
sis to date assumes a continuum diffusion coefficient. This
work examines the extent to which this assumption is valid.
In particular the motivation for this work is to determine
whether the evidence for the operation of a surface crowdion
mediated self-diffusion mechanism can be found in the
nucleation and growth behavior of homoepitactic films. The
surface crowdion diffusion mechanism recently predicted by
Xiao et al.'! for diffusion of Cu on strained Cu (001) would
provide highly anisotropic diffusion, in which transport
along one direction occurs by long range concerted displace-
ments of substrate atoms. Many seemingly isotropic sub-
strates exhibit anisotropic surface diffusion, where symmetry
is broken either by a surface reconstruction or by strain. The
mobility of an adatom is a tensor property that depends ex-
ponentially on the whole surface strain tensor, thus even
small deviatoric strains can yield anisotropic diffusion. As
the surface crowdion only becomes metastable in the pres-
ence of strain the following question arises: does the crow-
dion lead to a different pattern of nucleation and growth of
islands than would accrue if the macroscopic diffusion tensor
was the same but transport was by anisotropic nearest neigh-
bor hopping alone?

There is some evidence that the details of transport are
important. Linderoth et al.'> have conducted meticulous
STM studies, and kinetic Monte Carlo (KMC) simulations of
nucleation and growth of Pt on quasihexagonally recon-
structed Pt (001) surfaces, on which diffusion is observed to
be highly anisotropic. These researchers find that the scaling
exponent, y, varies both with the degree of anisotropy, and
the island shape. Amar, Family, and Hughes'? perform KMC
simulations for growth of islands in the presence of Lévy
diffusion.?” These researchers find that for both one- and
two-dimensional diffusion y rises as the exponent of the
power-law distribution of jump lengths decreases.

In this work it is demonstrated that the density of stable
two-dimensional islands is sensitive to the mechanism of
adatom diffusion from both the length of adatom jumps and
anisotropic hopping. The remainder of the paper is arranged
as follows: in Sec. II the impact of crowdion mediated self-
diffusion on the diffusion tensor is discussed and a KMC
simulation of island growth with anisotropic diffusion is de-
scribed. A mean-field rate equation treatment of film growth
developed by Venables,'* and then Bales and Chrzan* is ex-
tended to treat anisotropic diffusion in Sec. III. The results of
the KMC and rate equation models are compared and dis-
cussed in Sec. IV, and the conclusions drawn are summarized
in Sec. V.

II. KMC SIMULATIONS WITH LONG JUMPS

The surface crowdion'' is a metastable surface defect
(shown in Fig. 1) in which an adatom is absorbed into a close
packed atomic row in the substrate. The extra atom is accom-
modated in the surface by 8 or 10 atoms in a single atomic
row all shuffling along that row. The row along which the
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FIG. 1. Perspective picture of a crowdion on the (001) surface
of Cu. Atom positions were calculated by Xiao er al. (Ref. 11).
Arrows indicate the direction of compressive strain.

displacements are extended lies in the (110) direction with
the least compressive strain, hence in a homogeneously
strained material all crowdions will be extended in the same
direction.

Xiao et al. predicted the structure of the surface crowdion
on strained Cu (001) by using the nudged elastic band
method to find a minimum energy trajectory between the
initial and final configurations of the exchange surface diffu-
sion mechanism, and have also seen a similar structure on
unreconstructed Pt (001).13

In a single component system, once a crowdion is formed,
it is not possible to distinguish the original adatom from the
other atoms at the center of the crowdion. Only by looking at
the distribution of atomic displacement along the close
packed row does the crowdion make itself apparent, thus the
crowdion may be considered a quasiparticle that carries one
quantum of “atomic displacement” parallel to the close
packed row. As the displacements associated with the crow-
dion are distributed over approximately 10 atoms moving the
center of the crowdion one atom spacing along its extended
direction involves only small changes in the individual atom
displacements, thus the energy barrier for moving the crow-
dion along its row is very small [0(0.001) eV, less than ther-
mal energy at room temperature]. The energy required to
move the crowdion from one row to an adjacent row, how-
ever, is larger than the decay energy of the crowdion. The
effective mass of the crowdion in Cu has been estimated
from the atomic displacements to be 0.07 times that of a Cu
atom. Hence it is thought that the crowdion may be born
with some kinetic energy, and once created will move freely
in one direction until it is scattered by phonons, or surface
adatoms, and it decays ejecting an atom to the surface. For
(nontracer) self-diffusion this is equivalent to a diffusing
adatom making a large surface jump in which the adatom
“visits” all the surface sites on either side of the jump path.!®

The macroscopic diffusion tensor, D, of a diffusing spe-
cies is related to the microscopic transport processes that
species can perform by!’

= %E (r;®r)R;, (4)

where r; is the displacement vector, and R; is the rate of the
ith jump process. The sum is performed over all possible
displacement processes that the itinerant species can under-
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take. The squared dependence on the jump length means that
even if the occurrence of long jumps is rare they can make a
significant contribution to the diffusion tensor. Furthermore,
as the direction in which crowdions form is dictated by the
surface strain state their contribution will be anisotropic.
However, as the strain state that permits the formation of
crowdions breaks the fourfold symmetry of the surface it will
also cause transport of adatoms due to nearest neighbor hop-
ping to become anisotropic.

A KMC model has been developed to simulate two-
dimensional irreversible island growth (where the critical is-
land size i=1) on a square lattice. The purpose of this code is
to investigate the consequences of a hypothesized diffusion
mechanism involving the surface crowdion predicted by
Xiao et al. on strained Cu (001),!! and to see if it exhibits
behavior that can be distinguished from diffusion by aniso-
tropic nearest neighbor hopping in a real growth experiment.
To this end the model is devised to be as simple as possible
while including anisotropic surface diffusion, and the crow-
dion diffusion mechanism.

The dynamics of the KMC simulation are limited to in-
clude only six possible hopping processes. Three processes
are accessible to isolated monomers. Two processes enable
islands’ shapes to relax and the final ingredient in the KMC
code is adatom deposition.

A. Monomer diffusion

Isolated monomers (atoms with no first nearest neighbors)
are permitted to make nearest neighbor hops in the [110] and

[110] directions (defined to be the x and y directions, respec-
tively, with rates R, and R,), and to make a crowdion medi-
ated jump (with rate R.). The movement of a crowdion is
assumed to be more rapid than the total rate at which any
event occurs on the substrate. Thus the rate of crowdion
transport is limited by the rate of crowdion formation alone
and the jump (as with all the other permitted processes) is
assumed to be instantaneous. Hence there are no crowdion-
crowdion interactions. A crowdion is restricted to traveling in
the +x direction and only along one of the two adjacent
atomic rows in the surface. The crowdion is assumed to jump
d, lattice spacings before ejecting the atom at its center to
one of the two rows of empty surface sites to either side of it.
Should the crowdion encounter any atoms in either of these
two rows before traveling d,. the crowdion decomposes, and
the ejected atom binds to the surface atom. The jump integer
d. represents the root mean squared displacement of the dis-
tribution of crowdion jumps. As calculating the phonon drag
of a crowdion is nontrivial d, is left as a controllable param-
eter.

For the surface diffusion processes outlined above the dif-
fusion tensors for monomers is

2 (R, +dR,) 0

Dl:? 0 (Ry+%) ' ©)

Here b is lattice parameter of the primitive square surface
lattice (i.e., b=a/\2 where a is the lattice parameter of the
FCC lattice).
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There is theoretical evidence to suggest that vacancies in
the Cu (001) surface are as mobile as adatoms.'®!* As mono-
mers are continually deposited on the surface during growth
it is assumed that the population of monomers is larger than
the population of vacancies, and diffusion by vacancies is
ignored.

There are an infinite number of combinations of R,, R,,
R,, and d. that will give the same monomer diffusion coef-
ficient in Eq. (5). For simplicity only two extreme cases are
considered in the simulations presented here, diffusion by
anisotropic nearest neighbor hopping alone, and diffusion by
isotropic nearest neighbor hopping with anisotropic crow-
dion jumps. In the former case the diffusion tensors for
monomers is

, (6)

where R,=VR,R, is the geometric mean of the nearest neigh-
bor hopping rate, and N=(D,,/D,,)""* parametrizes the an-
isotropy. In the latter case

10
01

2d* 0
0 1

bR,
2

bR,
4

1=

, (7)

with ﬁh the reduced nearest neighbor hopping rate. Forcing
the diffusion tensors to be the same gives the relations
R, 2d*-\*

R, _m
and

R, 2(\*-1)

R, (Qd*-1)\*

B. Island shape relaxation

Two further adatom diffusion processes are included in
the code that allow islands to move and their shapes to relax.
These are hopping along the edge of an island (with rate R,)
and hopping away from a reentrant corner in the island pe-
rimeter (with rate R;). These are shown schematically in Fig.
2. Both of these are independent of the orientation of the
island edge, and both include hopping around convex corners
in the island edge. In general, atoms with one nearest neigh-
bor can hop clockwise or anticlockwise around an island
with rate R,, atoms with two adjacent nearest neighbors and
a next nearest neighbor between them can hop clockwise or
anticlockwise with rate R, and all other atoms in islands are
immobile. The requirement that a step hopping atom have a
next nearest neighbor is necessary to obey detailed balance.
R, is set to be smaller than R,, as the hopping atom is ini-
tially more highly coordinated for step hopping than edge
hopping.

Mobility of atoms at island edges permits islands to move.
The surface diffusion tensors for dimers, and trimers are,
respectively,

10
01

bR,
D2 =
4

, (8)
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FIG. 2. Examples of atom motion at an island
edge. The circles represent adatoms on the (001)
surface (the substrate atoms are not shown). The

mobility of the unhatched atom is considered.
Panels (a), (b), and (c) are examples of hopping
along an island edge that occurs with rate R,.
Panels (d) and (e) are examples of hopping away
from a reentrant step and happen at rate R,. Pan-
els (f) and (g) show configurations in which the
unhatched atom is immobile. In (f) the atom must

)

The result in Eq. (9) averages over the possible trimer con-
figurations weighted by their relative abundance.>°

C. Adatom deposition

To simulate the continued deposition of adatoms from the
growth process adatoms are placed on the substrate with a
rate FL?> (where F is the flux of monomers and L is the
dimensions of the substrate). The new atom is placed in a site
picked at random. Should that site lie under an existing is-
land a new site is picked at random from the set of empty
sites closest to the original site. This is justified in conditions
of two-dimensional growth where adatoms that are deposited
on top of existing islands diffuse to the island perimeter and
are incorporated into the growing island edge.

D. Testing

The KMC code was tested by comparing the evolution of
(n;) and (n,) with @ for isotropic diffusion with the predic-
tions from numerically integrated rate equations.* The agree-
ment can be seen in Fig. 3 (circles and solid lines). Plot (a)

be made immobile in order to not violate detailed
balance.

shows calculations for fractal islands where no atom mobil-
ity is permitted at island edges. Here p,~s*%, and r,
~ (1/+m)s", where d; is the fractal dimension, which is
determined from the radius of gyration®” to be 1.7+0.1. Plot
(b) of Fig. 3 shows calculations for compact islands where
the relaxation of island shapes is included. Here df=2, p;
~s, and r,=ays, with the fitting parameter «=0.95 for
square islands following Bales and Chrzan.*

All simulations presented here were performed on a 500
atom by 500 atom substrate with periodic boundary condi-
tions. All statistical data from KMC simulations is obtained
from an average over 80 simulations.

III. MEAN-FIELD RATE EQUATION ANALYSIS

Using a Smoluchowski-type system of coupled rate equa-
tions is an attractive method for modeling the early stages of
nucleation and growth of epitaxial films. Such models of low
temperature island growth generally assume that adatoms do
not desorb from the substrate surface, and that there exists a
critical cluster size, i, such that clusters of i+1 atoms do not
dissociate. This implies that the islands cannot coarsen, and
thus is only useful in the regime when island growth from a
deposition flux is much faster than the rate of island coars-

FIG. 3. Scaled plots of {(n;) and (n,) versus 6
for fractal (a) and compact (b) islands. In both
cases \D,.D, /F=10"b* solid lines are calcu-
lated from the self-consistent rate equation analy-
sis, and symbols are the results of KMC simula-
tions with anisotropy ratios, A=1 (O), A=12
(), A=2 (0), and in plot (b) A=4 (>).
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ening. In such a model for layer by layer growth with i=1
the rate of change in the mean population density of islands
of size s (for s>2) is given by

) (st =)+ (), -

(10)

Here time is parametrized in terms of the area of the sub-
strate covered, 6, by d@/dt=F, and the atomic area is set to
unity. The first term in parentheses is the change in the popu-
lation due to direct impingement of depositing monomers
from the vapor, and p, is the flux capture cross section of an
island of s atoms and depends on the islands geometry, area,
and sticking coefficient. The second term is the change in
population due to the capture of monomers diffusing on the
surface, where H; is the diffusing monomer capture cross
section. The change in the mean population of monomers is

L 2 ()t )<n1>
=2

(11)

) (1= 3 ) - o200

where the terms have been grouped into source terms in the
first set of parentheses, and sink terms in the second set of
parentheses. The detailed physics of a particular island
growth problem lie in the innocuous looking capture cross
sections H;.

Venables,'* and then Bales and Chrzan* developed a self-
consistent method for calculating the capture numbers for the
case of layer by layer growth when the kinetics are limited
by diffusion. These researchers found the flux of monomers
at an island edge by solving, self-consistently, the diffusion
equation for the local density of monomers in a mean field of
monomer sinks (islands) and sources (the depositing vapor).
This mean-field approach while successful at capturing the
evolution of (n,) and (n,), it does not predict the observed
distribution of island sizes, g[s/s(6)]. More recently, Pope-
scu, Amar, and Family?'~?* have developed a method for
calculating the capture cross sections that does account for
island-island correlations and predicts the observed island
size distribution, however, the discussion here is limited to
the mean-field treatment.

Following Bales and Chrzan* it is assumed that the kinet-
ics of adatom attachment is limited by the flux of monomers
to island edges. The distribution of monomers around an
island is estimated by solving the diffusion equation,

on,(u, @ D
%=V;an(u,0)+t7—8, (12)
where n,(u, 6) is the mean local concentration of monomers
at position u from the island center. Here the first term is the
diffusive change in the local monomer density, and the sec-
ond term is a distributed source accounting for the continued
deposition of monomers from the vapor,

PHYSICAL REVIEW B 72, 115432 (2005)

J:1_2p3<ns>- (13)

s=1

The final term in the diffusion equation is a sink term to
account for the continuous loss of monomers to islands (and
other monomers and impinging vapor atoms). This is ap-
proximated by calculating the mean effective sink strength of
all the islands and distributing it uniformly over the entire
substrate (the mean-field approximation),

S= P1<n1>+2—<n1>+ > (n, >—=n1(u OE". (14)

§=2

This is equivalent to calculating a mean density of sinks of
unit strength, which is related to a characteristic sink separa-
tion &.

If the diffusion tensor, D, only contains diagonal terms
(which can certainly be accomplished by rotating the coordi-
nate system providing the deformed lattice remains ortho-
rhombic), the diffusive term on the right-hand side of Eq.
(12) is

D D, &n #n
V— an = 21 21 (15 )
F F ox F ay
where D,, and D,, are the diagonal elements of the

diffusion tensor. This expression is rewritten in a coordinate
system parametrized by r and 73 which are related to
the Cartesian coordinated by x=+/(D,,/Dg)r cos(¢), and y
=\(D,,/Dy)r sin(¢), to give the Laplacian in cylindrical co-
ordinates,

Dy

#ny 14
V an(u 0)——( s

+
ar’ r or

1

+ ﬁz”;) (16)

I
Here D, has the dimensions of a diffusion coefficient but is
as yet undefined. The coordinate system stretches the x and y
directions relative to the speed of ¢ of diffusion in those direc-
tions. If Dy is chosen to be \'Dxnyy the area of the substrate
remains the same in the coordinate system and the dispersed
sink density remains unchanged. This is equivalent to
stretching the x axis by a factor N\ and the y direction by a
factor 1/\, where N=(D,,/D,,)"".

The partial differential equation in Eq. (12) can be re-
duced to an ordinary differential equation by comparing the
rate of change of the local density of monomers with the
mean density of monomers,

E(M %>_<”1‘<”1>> (@ 1ony l@)
Do\ do a0) \ D@ )\ o2 e TRk
~0. (17)

The approximation to zero is justified when Dy/F is suffi-
ciently large (compared to the square of the atomic area) so
the term on the left-hand side can be neglected (the adiabatic
approximation). This assumes that the shape of the monomer
distribution changes very slowly and only the amplitude of
the distribution changes significantly with the mean concen-
tration. This approximation removes the time dependence
from the problem and yields the Helmholtz equation,
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Iny  Lom L%)_(HI—W)
( ar? - r or * rzaqﬁz a D0§2 ’ (18)

in which the variables r and ¢ can be separated. The Helm-
holtz equation can be solved for the boundary conditions that
the monomer density reaches the mean-field value infinitely
far from the island and the monomer density is zero at the
island edge. The simplest solution occurs when the perimeter
of an island of size s (or its containment area if it is fractal)
lies on a constant value of r=r, in the diffusion weighted
cylindrical coordinate system. This implies the islands are
elliptical with an aspect ratio of A2, This will be the case if
perturbations at the island edge can relax with sufficient
speed to prevent a growth instability in the island shape but
without relaxing so fast that the island becomes circular. A
stronger argument can be made in which the detailed shape
of the island is unimportant provided that the monomer
depletion field around the growing island is roughly elliptical
with an aspect ratio 2. This will be the case if the island
does not exhibit a growth instability (i.e., growing in a
needle shape in the direction of slowest diffusion). When the
deviation of the island from circular matches the stretching
of the coordinate system the angular dependence of the con-
centration disappears, and the Helmholtz equation reduces to
that of Bales and Chrzan. Thus solving for n,(r, 6) subject to
the conditions that n,(r,,0)=0 and n,(r—,6)=(n,(0))
yields

Ky(r/§) ) (19)

 Ko(ry/é)

Where K;(x) is a modified Bessel function of order j. The
capture coefficients can now be found by equating the rate of
monomer capture with the flux perpendicular to the island
perimeter,

ny(r,0) = <n1(9)>(1

(ni(0))H, = i DV, (I, )pI)dl(T), (20)

where I' is the tracking vector of the perimeter of the island,
and p(I'), and dI(I") are the outward unit vector perpendicu-
lar to the island edge, and the elemental perimeter length at
I, respectively. Parametrizing the edge of the island with the
angle ¢ in the stretched cylindrical coordinates gives

Ml e @)

r—rx

2w
<n 1 ( 0)>Hv = \”DXXD)'yf Ts J
g=0 "

This gives the capture strength as a function of the charac-
teristic length &,

j o Ki(rd€)
H,= ZWV’DXXD”% ( K(‘) (:s/g) ) .

In turn, ¢ depends on the sum of capture strengths of all
island sizes weighted by their abundance [Eq. (14)]. As
under/over estimating & over/under estimates H, which
increases/decreases the estimate of ¢ the capture numbers
can be found self-consistently in an iterative manner.

The coefficient H; is proportional to the geometric mean
of the diagonal elements of the diffusion tensor. This, at first

(22)
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sight, is not surprising as an island on a substrate with an-
isotropic diffusion depletes the monomers from the same
area of substrate in a given time as an island on an isotropic
surface with diffusion coefficient \D,,D,,. Equation (22) im-
plies that the geometric mean of the diffusion tensor is the
only important parameter in the evolution of the density of
stable islands, (nX>, with 6. It must be noted that the mean-
field approximation fails to capture the island size distribu-
tion, and thus the treatment outlined above gives no informa-
tion about whether the universal function g[s/5(6)] in Eq. (2)
is lost with anisotropy.

In fact, as is demonstrated in the next section, the result
found above is only accurate for relatively small diffusion
anisotropies. Moreover, the erroneous predictions of this
model at large anisotropies hints at a more general failing of
macroscopic diffusion descriptions of island growth.

IV. RESULTS AND DISCUSSION

The discussion of results is broken down in the following
way. First the mean-field rate equation calculation for the
number density of stable islands is compared to KMC simu-
lation results and the usefulness of the rate equation ap-
proach is discussed. Next the distributions of island sizes
yielded by KMC simulations are discussed. Finally the influ-
ence of crowdion mediated diffusion on the growth of is-
lands is discussed and compared to island growth with near-
est neighbor hopping alone.

A. Rate equation analysis

The density of stable islands (n,) as a function of the
coverage 6 computed using rate equations and the KMC
simulations are shown in Fig. 3. Monomer diffusion in the
KMC simulations was by nearest neighbor hopping alone
with varying degrees of anisotropy (parametrized by \), but
with the same magnitude of the diffusion coefficient, D,
=vD,D,,. From these plots two things are apparent. First
increasing anisotropy in the KMC simulations reduces the
density of stable islands (in disagreement with the rate equa-
tion analysis), and second, islands begin to coalesce at lower
coverages.

It can be seen from Fig. 3 that the values of (n,) and (n,)
measured from the simulations diverge from the rate equa-
tion predictions more rapidly with increasing anisotropy for
the case of fractal islands than compact islands. The cause is
evident in the snapshot of the island archipelago for each
case (Fig. 4). The fractal islands show a growth instability
that has been described by Heyn.?* These islands are elon-
gated in the direction of slow diffusion. As there is no mo-
bility of atoms at the island edge a perturbation in the island
shape can only heal if the perturbation reduces the outward
velocity of the growing island’s perimeter. An asperity at the
island periphery protruding in the slow direction of diffusion
can grow rapidly by depleting the monomers from the re-
gions of substrate laterally (in the fast direction) on either
side of it. Thus the islands in map (a) of Fig. 4 extend in the
slow direction creating depleted regions along the long edges
but with very little depletion ahead of their fast growing tips.
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FIG. 4. “Micrographs” of islands at §=0.1 grown with D,/ F=107h* with \=2 and no edge mobility (a), and A\ =4 with island shapes able
to relax (b). Image dimensions are 5005 X 500b. Diffusion is fastest in the horizontal direction. Considerable coalescence can be seen in
image (b). Image (c) shows compact islands grown with isotropic diffusion. Image (c) is included for comparison with (b) to show that the
lower number density of islands grown with large anisotropy arises from a lower nucleation rate, rather than just early coalescence of islands.

Clearly this violates the assumption made in the rate equa-
tions analysis in Sec. III that the islands (or at least their
depleted regions) have an aspect ratio of \?, and so one
should not expect fractal islands simulations to agree with
the mean-field theory.

From chart (b) of Fig. 4 it can be seen that the islands for
the shape relaxing calculation retain an aspect ratio of ap-
proximately unity, even with a diffusion anisotropy of
D../D,,=256, as required by the rate equation analysis. Fig-
ure 3 éhows, however, that even compact islands do not ad-
here to the mean-field predictions (particularly evident in the
monomer density for A=4). This indicates that the prediction
from Sec. III that the geometric mean of the diffusion tensor

is the only relevant parameter in the number density of stable
islands is flawed.

The systematic deviation in (n;), and (n,) from the iso-
tropic case with increasing N in Fig. 3(a) can be understood
by considering the number of unique sites visited by a ran-
dom walker on a square lattice. If the walker steps north,
south, east or west with equal probability then the expected
number of unique lattice sites that the walker visits, defined
to be (N,), after taking N steps asymptotes t0>

N

and for a one-dimensional walk this is
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FIG. 5. Plot of the number of
unique sites visited by a two-
dimensional  isolated random
walker with Dozf1 and A=1 (O),
A=v2 (), A=2 (O), A=212 (*).
The plot marked by (<) is for a
one-dimensional walker with D
=;ll. Panel (a) shows sites visited
after N hops, panel (b) shows the
site visitation as a function of
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Number of hops (N)
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(24)

These two cases are the extreme lines in plot (a) of Fig. 3.
The random walk on a two-dimensional lattice is completely
space filling—that is, given an infinite number of steps a
walker is certain to return to its starting point.>! As the walk
becomes anisotropic, however, the efficiency with which the
random walker searches space is reduced, and the fraction of
unique sites visited, (N,)/N diminishes until the extreme
case gives one-dimensional diffusion.

For diffusion with a constant D, however, the number of
hops performed in a given time increases with \ [in fact N
~D,+D,,=Dy(\*+1/\*)]. The result, as shown in plot (b)
of Fig. 5, is that diffusing monomers sample more of the
surface lattice in a given time when the diffusion is aniso-
tropic. Clearly this must be important for the early time
nucleation of islands when there is only a gas of monomers
on the surface. At these times the notion of depleted regions
is not applicable and nucleation depends on the time it takes
monomers to search an area for other monomers, rather than
the time it takes a monomer to travel a given distance (across
a depleted region) to an existing island. The nucleation
search area, 1/(n;), decreases as more monomers are depos-
ited on the surface. Thus a slow searching species will nucle-
ate later, and with a higher density of islands, than a fast
searching species. This behavior can clearly be seen in Fig.
3. Once islands have been established and act as sinks for
monomers then the distance an adatom must travel to an
island becomes important.

1000

1500 2000 2500

time.
Time

It must be noted that the diffusion coefficient only gives
information on the distances that atoms move in a given
time, not the area they search. Hence, rate equation formu-
lations that rely only on macroscopic diffusion (such as that
in Sec. III along with that of Bales and Chrzan?*) overlook
some of the physics of the problem (and hence the good
agreement between these theories and numerical experiments
must be, at least to some extent, fortuitous).

B. Island size distribution

The mean-field rate equation analysis accounts for neither
island coalescence nor spatial island-island correlations and
so does not capture the correct island size distribution;
hence, the discussion here is limited to the KMC simulations.

1. Size distribution scaling

The shape and scaling behavior of the island size distri-
bution with hopping anisotropy is examined in Fig. 6. Panel
(a) shows scaled plots of P(s, #) for fractal islands at a cov-
erage of #=5% (the low coverage was chosen to minimize
effects of coalescence). Panel (b) shows the same plots for
compact islands. The distributions in plot (a) are slightly
different in shape to those in plot (b); however, remarkably
with in each plot there are no gross (discernible from the
noise) differences in the shape of the distribution arising
from anisotropy.

The origin of the change in size distribution from fractal
to compact islands is the mobility of dimers and trimers.?®
This is illustrated by Fig. 7 that shows unscaled (a) and
scaled (b) size distributions of islands grown isotropically

Scaled Tsland Size ( s/<s>)

FIG. 6. Plots of scaled island size distribu-
tions at #=0.05 grown with Dy/F=10"b* for
fractal (a), and compact (b)_ islands. Diffusion
anisotropies, A=1 (O), A=v2 (), A=2 (0), A
=4 (>) [in (b) only].

A A

v ¥V

X X

T 2 @ 22 ® o

g o0 < %

> 1 5’&0)% > 1 ([EQ o

£ 038 T £ 038 ° ®
a ¢ Q a ®

2 0.6 @° ° 2 0.6 & 2
204 ¢ 2 S04 o >
2 ¢ g 8

& 0.2 a 0.2

2 0@5 g5 ¢°

B 0 B 0

g o 05 1 15 2 25 & 0 05 1 15

2 2.5

Scaled Island Size ( s/<s>)

115432-8



IRREVERSIBLE ISLAND GROWTH IN THE PRESENCE...

PHYSICAL REVIEW B 72, 115432 (2005)

x 10 4

7 \
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P = island size distribution under diffusion by isotro-
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with simple hopping and different degrees of edge mobility.
Allowing dimers and trimers to move, albeit slowly, vastly
increases the probability that these islands can coalesce with
other islands, and so adds an additional sink term to the rate
of population change of these small island. Furthermore, mo-
bile trimers are most likely to capture a fourth monomer (and
be rendered immobile) in regions with the largest average
monomer concentration, that is, regions furthest away from
other islands. The result is a narrowing of the distribution of
capture areas (or Voronoi cell areas). So, although dimers
and trimers are unable to dissociate, allowing them to move
can be thought to increase the effective critical island size.

The robustness of the island size distribution scaling to
diffusional anisotropy and the mechanism of transport is all
the more remarkable given that the size distribution for is-
lands grown with purely one-dimensional diffusion exhibit a
different size distribution.?’

2. Coalescence

The KMC simulations exhibit more coalescence of is-
lands as diffusion becomes more anisotropic. On isotropi-
cally diffusing substrates coalescence of islands is inhibited.

Scaled Island Size ( s/<s>)

As two neighboring islands approach each other the deple-
tion regions around them overlap and the accretion of mono-
mers in the overlap region is reduced, which slows the
growth velocity of the sections of island perimeter that are
heading toward collision. The islands screen each other from
the sea of monomers as they approach each other. In the case
of anisotropic diffusion the depleted regions are highly an-
isotropic. Thus, the screening in the slow diffusing direction
is greatly reduced and coalescence can occur earlier in this
direction. It can be clearly seen that in both “micrographs”
(a) and (b) in Fig. 4 that the separation between islands is
greater in the direction of fast diffusion (the x direction) than
in the slow direction.

C. Crowdion diffusion

There are two regimes of E,, and R, in the diffusion tensor
in Eq. (7) that lead to qualitatively different trajectories of a
diffusing adatom (Fig. 8). The first of these has R,=O(R.)
[trajectory (a) in Fig. 8]. In this case crowdions are as likely
to occur as simple hops. The trajectory looks like that of an
isotropically hopping random walker; there are large regions
of the surface that have a high density of site visitation. In

FIG. 8. Panels (a), (b), and (c) show trajecto-
ries of diffusing adatoms moving by crowdion
jumping and simple hopping. In all cases the dif-
fusion tensors are identical with VDD,
=%b25_1 and \=(D,,/D,,)"*=2y2 and hopping
is isotropic. In panel (a) the diffusion jump
length, d,, is 10 atomic spacings, while in (b) and
(c) it is 100. The trajectories in (a) and (b) are

4000 time units long, while (c) is 80 000. It can
be seen that the diffusion trajectories in (a) and

100
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0
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x 16"
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(b) are qualitatively different, while increasing
the diffusion time of the (b) to (c) yields a trajec-
tory that resembles (a). It must be noted that the
scales of the x and y axes are different in plots
(a), (b), and (c) and in all cases the numbers
given are atomic spacings. Plot (d) shows the
number of unique sites visited with time for the
two sets of diffusion parameters. The squares are
for diffusion with d.=10, and the circles are for

—2000 -1000 0 1000 0
Time

1000 2000 3000 4000 5000

d.=100.
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FIG. 9. Plots of (n,) and {(n) vs 6 for islands
grown with crowdion diffusion and mobility to
flux ratio Dy/ F=10"b*. Plot (a) is calculated for
fractal islands and plot (b) for compact islands. In
both plots solid lines are the result of mean-field
calculations and symbols (and dashed lines) are
the results of KMC simulations for A=1 and hop-
ping only (O), N=2 and hopping only ((J), A=2
and crowdions with d.=10 (<¢), and A=2 and
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the other extreme the rate of crowdion formation can be very
small in comparison to the hop rate (R, <<R,), this is shown
by trajectory (b) of Fig. 8. Trajectory (a) is qualitatively dif-
ferent than path (b), which has relatively few crowdion
jumps but the jumps are large enough to carry the walker
well away from the area it has already searched. Between
these big jumps are local areas which are heavily explored by
isotropic hopping.

The path of the adatom diffusing with large crowdion
jumps looks similar to the trajectory of a Lévy walk (in one
dimension).’?> Lévy walks are a class of random walks in
which the second moment of the jump length probability
distribution is infinite, i.e., the jump length probability dis-
tribution decays algebraically. This implies that species dif-
fusing by a Lévy walk will have an infinite diffusion coeffi-
cient as infrequent long jumps cannot be neglected in the
sum in Eq. (4). These walks have no intrinsic length scale,
and the trajectory is self-similar. This is not the case for the
crowdion walk where the jump length probability distribu-
tion is Gaussian; increase the diffusion time and the peram-
bulation resembles ordinary hopping again. This can be seen
from trajectory (c) in Fig. 8. The implication of this is that if
the qualitatively different trajectory impacts island growth
then the time scale over which atoms diffuse is also impor-
tant, and hence there may be a window of growth parameters
where island growth behaves differently to those grown by
nearest neighbor hopping.

Anomalous diffusion at surfaces is not unique. Bychuk
and O’Shaughnessy?® observe anomalous diffusion of ada-
toms on a solid liquid interface where Lévy-type diffusion
arises (over a limited time scale) because adatoms can appear
to make large jumps by desorbing from the surface and dif-
fusing through the liquid before reabsorbing to the surface.
The consequence of anomalous diffusion on island growth
has been considered by Amar, Family, and Hughes.'? These
researchers perform KMC simulations of growth of fractal
islands in the presence of true Lévy diffusion where the
probability of a jump of length Ax is given by P(Ax)
~ Ax~%PL, where d, is the dimensionality of the substrate,
and By is the Lévy exponent that determines the length of the
tails of the probability distribution. Normal diffusive (yDr)
behavior occurs for 8; =2, while 2> 8; =1 is referred to as
“enhanced diffusion,” and B;<1 is “ballistic” diffusion.
These researchers find that the island density scaling expo-
nent, y, for both one- and two-dimensional diffusion rises
with decreasing Lévy exponent.

]

3 crowdions with d,=50 (>>).

1. Stable island density

Understanding how the makeup of the diffusion tensor
impacts adatom diffusion paths gives insight to the density of
stable islands grown in the presence of crowdions. Two sets
of KMC simulations including crowdion hopping were per-
formed, both with anisotropy ratios of A=2. In one case the
root mean squared crowdion jump length d.=10 atom spac-
ings, and in the other d.=50 atom spacings (this gives a ratio
of the rates of crowdion hopping to nearest neighbor hopping
of RC/§h=O.16, and RC/§h=6 X 1073, respectively). Figure 9
shows the evolution of {n,) and (n,) with coverage for an-
isotropic diffusion with different extents of crowdion jump-
ing. There are two features in these plots worthy of com-
ment. First, the number density of islands and monomers
rises sharply with increasing d.. This is consistent with the
reduction in the area searched by the crowdion flight as the
jump length is increased.

A second observation of interest when comparing panel
(a) in Figs. 3 and 9 is the delayed coalescence of fractal
islands as the crowdion jump length is increased. The origin
of this behavior lies in the shape of the island, the embedding
area of fractal islands grown with larger values of d, be-
comes more circular (Fig. 10), and thus coalescence in the
slow diffusing direction is delayed.

2. Island shape and island-island correlations

Figures 10 and 11 show typical archipelago maps for
growth of fractal and compact islands, respectively. These
figures also show the average island-island correlation func-
tions from 80 simulations, of which each map is an example.
The island-island correlation function gives the probability
distribution of finding the center of an island at a position r
from the center of any other island. It is calculated by taking
the autocorrelation function of the islands’ centers of mass. It
can be seen clearly that islands grown with anisotropic hop-
ping exhibit a shape instability, while those grown with iso-
tropic short hopping and anisotropic large jumps do not. So
crowdions suppress the shape instability. More striking is the
denuded (dark) regions in the island-island correlation plots.
It can be seen that anisotropic arms of the denuded regions
are reduced in width but not in length when the crowdion
jump length increases. This means that the screening by is-
lands becomes more isotropic with increasing d.. Both of
these observations can be explained by more closely exam-
ining the diffusion in the neighborhood of the island edge.
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FIG. 10. “Micrographs” of islands and corresponding island-island correlations plots (averaged over 80 maps) at coverage #=0.05, grown
under fractal growth conditions with Dy/F=107b* and A=2. Plots (a) and (b) have isotropic hopping and crowdion jump length d,=10, (c)
and (d) have isotropic hopping and crowdion jump length d.=50, and (e) and (f) have anisotropic hopping with no crowdions. The islands
in (a) and (c) have been shaded uniformly white, as the majority of the atoms in the islands are atoms that were originally in the substrate.
Maps are 5005 X 500b, while island-island correlations are 2005 X 200b. Dark regions in the island-island correlations are anticorrelated,
while light regions are correlated.
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FIG. 11. “Micrographs” of islands and corresponding island-island correlations plots (averaged over 80 maps) at coverage #=0.05, for
compact islands grown with Do/ F=107h* and A=2. Plots (a) and (b) have isotropic hopping and crowdion jump length d.=10, (c) and (d)
have isotropic hopping and crowdion jump length d,.=50, and (e) and (f) have anisotropic hopping with no crowdions. The islands in (a) and
(c) have been shaded uniformly white, as the majority of the atoms in the islands are atoms that were originally in the substrate. Maps are
5005 X 500b, while island-island correlations are 2005 X 200b. Dark regions in the island-island correlations are anticorrelated, while light
regions are correlated.

115432-12



IRREVERSIBLE ISLAND GROWTH IN THE PRESENCE...

ﬂ]

(

=
~
—
\
\

0.8 1 .
0.6 1 ‘
o4l

021

Monomer Density

0 50 100 150 200 250 300

Distance (in atomic spacings b)

FIG. 12. Concentration profiles near an island edge calculated
numerically after 10° s. The thin solid line is calculated for nearest
neighbor hopping with a R,=1 s~!, the dashed line is for hopping
and crowdion diffusion with the same diffusion coefficient as before
and R,=0.2 s7!, R.=8 X 107> 57!, and jump length d.=100, and the
thick solid line is calculated for simple hopping only with hopping
rate R,=0.2 s\

Fick’s first law, and the definition of the diffusion coeffi-
cient, are appropriate only in regions with a slowly varying
concentration gradient relative to the jump length—the
simple derivation of Fick’s first law for diffusion with atomic
jumps of [ lattice spacings assumes the gradient in concen-
tration is uniform over 2/ lattice spacings. At the island edge
the concentration gradient changes abruptly, so within d.. lat-
tice spacings of the island the simple diffusive model is no
longer appropriate.

The transport of monomers to an island edge can be bro-
ken into two regions, an outer region greater than d,. from the
island edge where diffusion is fast and crowdions can be
included in Fick’s first law, and an inner region in which
one-half of the crowdion formation events instantly remove
monomers to the island edge (the other one-half move atoms
to the outer region). The inner region can be modeled by
slow isotropic diffusion with a distributed sink strength given
by the crowdion formation rate. This can be seen in Fig. 12
that shows the numerically computed concentration profiles
for one-dimensional diffusion to a sink edge from an initially
uniform solute reservoir. In this picture of growth the island
edge sees an isotropic slow diffusion field. So, providing that
perturbations in island shape do not “poke through” the inner
isotropic region the asperities gain no extra growth velocity
and the island shape is stable.

PHYSICAL REVIEW B 72, 115432 (2005)

3. Island size distribution

The mode of diffusion seems to have little impact on the
shape if the island size distribution,'® which arises from the
correlated break up of Voronoi cells.”?!

4. Scaling exponent x

The scaling exponent y in Eq. (3) is estimated by finding
the gradient of a least-squares straight-line fit to the plot of
log;o({n,)) versus log,o(Dy/F) (shown in Fig. 13). The ex-
ponent is found to increase for both compact and fractal is-
lands from x=0.33+0.005 for isotropic hopping to Yy
=0.34x0.005, x=0.35+0.004, and x=0.36+0.008 for aniso-
tropic diffusion (with A=2) for; no crowdions, and crowdi-
ons with jump lengths d.=10, and d.=50, respectively. This
could indicate that over the length and time scales associated
with an adatom moving to an island the transport appears to
exhibit “enhanced” diffusion. Amar et al.'> see y rise from
0.24 to 0.29 for one-dimensional diffusion, and go from 0.34
to 0.38 for two-dimensional diffusion as (; is diminished
from 4.0 to 1.33 (and the tails of the jump probability distri-
bution become wider). The situation for crowdion diffusion
is somewhat more complicated as here one-dimensional “en-
hanced” diffusion is embedded in a two-dimensional diffu-
sion field.

Ratsch er al.?® see an increase in the scaling exponent
from 0.33 to 0.38 with increasing edge mobility from
R,/R,=0.001 to R,/R;,=0.1 as the effective critical island
size rises above unity. As the site searching ability of the
crowdion is reduced with increasing d., small clusters have
more time to diffuse between collisions with monomers,
which increases their relative mobility. It is possible that this
accounts for the increasing y for compact islands but does
not account for the change in y for fractal islands where
there is no edge running.

V. CONCLUSIONS

One aim of this work is to determine if evidence for crow-
dions can be found in the growth pattern of islands. It is
demonstrated above that there are potentially experimentally
observable differences between island growth in the presence
of the postulated crowdion diffusing mechanism, and the is-
lands grown by anisotropic simple hopping with the same
diffusion tensor. The scaling exponent, y, is one experimen-
tal observable that is impacted by crowdions, however, other

FIG. 13. Plot of (n,) vs Dy/F at #=0.05 for
fractal (a) and compact (b) islands grown with
isotropic hopping (O and solid line), A=2 with
anisotropic hopping only ((J), A=2 with isotropic
hopping and a crowdion jump distance d.=10
(0J), A=2 with isotropic hopping and a crowdion
jump distance d.=50 (>).
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factors that influence y must be ruled out (such as diffusion
at island edges), and experiments must be able to measure y
accurately. Similarly, the shape of fractal islands is another
observable by which crowdions might reveal themselves.
Again, one must observe islands with effectively circular
embedding areas in the presence of strongly anisotropic dif-
fusion. This requires long denuded arms in the island-island
correlations, and presumably temperatures low enough to
freeze out edge diffusion (so that the islands are fractal) but
not so low that crowdions are also frozen out.

A more general conclusion from this work is that the
nucleation and growth of islands is sensitive to how atoms

PHYSICAL REVIEW B 72, 115432 (2005)

search the surface. Thus, the diffusion tensor by itself is not
sufficient to describe island growth, it is necessary also to
know how the diffusion tensor is composed.
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