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Abstract

Theoretical Studies of Nano Self-Assembly
by

Peter Alexander Greaney

Doctor of Philosophy in Engineering—Materials Science and Mineral Engineering

University of California at Berkeley

Professor Daryl C. Chrzan, Chair

The role of surface strain in the growth of self-assembling nanostructures is investigated
theoretically. The magnitude of the strain at the surface of a film generated by a buried
array of misfit dislocations is calculated. It is demonstrated that such a film provides a
suitable substrate for wavelength controlled spinodal decomposition of a second film grown
on top of it. The role of homogeneous substrate strain is discussed in the context of how it
affects diffusion processes and how these, in turn, impact island growth. An existing mean-
field analysis of island growth is extended to include anisotropic diffusion. The results
of the mean field calculations are compared with kinetic Monte Carlo simulations. It is
found that anisotropy in adatom hopping reduces the density of stable islands. It is also

found that although the shape of island size distribution is sensitive to island relaxation

processes, it is not discernibly affected by hopping anisotropy with ratios B:; up to 16. A
diffusion mechanism involving the recently discovered surface crowdion is hypothesised and

the implications of this mechanism on island growth are studied through KMC simulations.

Professor Daryl C. Chrzan
Dissertation Committee Chair
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Chapter 1

Introduction

Much of the behaviour of materials at the nanometre length scale differs from
the behaviour of bulk materials. For electrical properties this is because quantum effects
become important at very small sizes and many of the assumptions upon which explanations
of bulk properties depend (in particular wave properties) are no longer valid when dealing
with countable numbers of atoms. The mechanical properties of a material also change
when length scales become very small, however this is due to the reduction in population of
mechanically important crystal defects (e.g. dislocation sources and grain boundaries), and
because of the interaction between elastic strain fields and the physical boundaries and free
surfaces of the material. Understanding the behaviour of materials on the nanometre length
scale has, in recent years, become an important area of materials science due to both the
technological promise of nano-structured materials, and the furthering of our fundamental
understanding of materials.

Useful devices that exploit nanoscale materials properties usually require regular
arrays of nanoscale structures. For example arrays of quantum dots (structures that have
at least one bound state in the band gap due to confinement) can be used to make lasers
and photodetectors of a desired wavelength. Arrays of magnetic materials are used for data
recording. Films of nano-crystalline diamond are used for super-hard coatings. Creating
arrays of small scale features with the desired degree of uniformity of feature size, shape,
composition and even spacing is non-trivial, especially as these features may be too small to
pattern by lithography. Processes in which desired materials structures grow spontaneously
are a promising avenue for low cost fabrication of nano-structured materials. These so called

“Self-organised assembly processes” offer large area patterning at the expense of the long



range (translational) order of the array of nano features. Spontaneously occurring regular
structures are well known in materials science—a common example is the lammellar structure
of a solidified eutectic alloy. A characteristic length scale of the heterogeneous structures
arises through the competition between thermodynamic and kinetic driving forces each
favouring different length scales. Hence understanding the thermodynamics and kinetics of
crystal growth, morphological, and structural transitions at the nanoscale has also become
an important area of materials research.

This thesis offers a theoretical exploration of two topics in “nanoscale self-assembly.”
In the first section the feasibility of using a strain template to control the wavelength of spin-
odal decomposition within a film is discussed. In the second section the effects of anisotropic
surface diffusion and a newly identified surface transport mechanism on the early stages of

island growth are investigated.



Chapter 2

Segregation in Strained Films

2.1 Introduction

There are many cases where it is desirable to create an array of small particles
or nano-crystals with a narrow size distribution. One particular example is the case of
longitudinal magnetic recording, where a film of single-domain ferromagnetic particles is
used to digitally store information.

In computer hard-drives the substrate for the magnetic film is a glass or aluminium
disc. The particles in the film have their soft direction of magnetisation oriented at random
in the plane of the disc. Bits of data are written by magnetising a collection of the particles
in a particular orientation in the film, with a local magnetic field. Approximately 100
particles are needed in each bit to give a large signal to noise ratio for reading back the data.
Each bit does not have a predefined position but, rather, bits are written one after another
along concentric circular tracks as the disc rotates. The width of a track is determined
by the width of the read-write head and the servoing precision of the arm that holds it.
The length of the bit is limited by how sharp the boundary can be written (and detected)
between bits in the track. Improving areal bit densities requires writing smaller bits with
sharper boundaries.

Writing sharp bit boundaries that do not blur over time requires the magnetic
particles not to be susceptible to thermal randomisation of their magnetic moments and that
particles not be interacting magnetically. Bits can be made smaller and their boundaries
sharper by reducing the size of the magnetic particles. However, there is a size threshold

below which the energy required to flip the particles’ directions of magnetisation is attainable



by thermal fluctuations over reasonable time scales. Creating efficient recording media at
this so called “superparamagnetic” limit requires all the magnetic particles to be larger
than some critical size but as close to it as possible. There needs to be a monodisperse
distribution of particle sizes with the whole distribution just larger than some critical size
(approximately 8nm for the currently used non antiferromagnetically coupled Co alloy films
[1).

Arrays of islands and particles grown by standard physical deposition processes
exhibit a size distribution as broad as the average particle size [2]. This is because there
is only one characteristic length scale in the problem (the average island size). To create
cost effective longitudinal recording media that are functional at the superparamagnetic
limit requires finding a “self-assembly” process for growing a monodisperse film of magnetic
nanoparticles. In this chapter the feasibility of creating an array of particles with a nar-
row size distribution by using the strain from an array of misfit dislocations to control the

wavelength of a spinodal decomposition reaction is presented.

2.2 Background

2.2.1 Misfit dislocations

Misfit dislocations are observed at the film-substrate interface of lattice mismatched
hetroepitaxial films when the strain energy of the film reaches some critical value (that is
usually proportional to film thickness). In epitactic systems of small or moderate mismatch
misfit dislocations are only energetically favourable in films thicker than some critical thick-
ness. Since these dislocations are only stable at a finite film thickness, they must nucleate at
the surface and glide to the film substrate interface. Thus, as the glide plane lies necessarily
at an angle to the film substrate interface the Burgers vector contains a component out
of the plane of the interface. As only the edge component of the Burgers vector projected
onto the substrate interface is strain relaxing,! surface nucleated misfit dislocations give
poor stress relief. Epitactic systems with large mismatches on the other hand can have
critical film thicknesses of less than a monolayer. These films necessarily grow as three di-

mensional islands which relax misfit strain by directly incorporating pure edge dislocations

!Screw dislocations are pure shear and will not relax misfit strains.



at the island edges as they grow. This results in a regular network of misfit dislocations
with a high degree of misfit relaxation [3, 4]. Woodall and coworkers have shown that by
growing at low temperatures, the average separation of these pure edge misfit dislocations
in a system with an 11% mismatch (InAs on GaP(001)) can be as close as 4.1 nm with only
a 0.1 nm deviation in regularity of their position (leading to a 85% strain relaxation).
Misfit dislocations in thin films have associated with them a strain that is nonzero
at the film surface. Traditionally, misfit dislocations have proved to be a problem in micro-
electronic devices as they ruin their optoelectronic properties. Consequently, much effort
has been spent on trying to eliminate misfit dislocations. However, it has been shown both
theoretically [5, 6, 7, 8] and experimentally [9] that the surface strain from a network of
misfit dislocations can provide regions of preferential island nucleation during epitaxy. This
makes it possible to employ a network of misfit dislocations in an epitaxial film as a pat-
terned substrate for the growth of a self-assembled array of nano-crystals. The long range
order for the array comes from the elastic interactions of the dislocations and the fine scale

is controlled by the misfit strain.

2.2.2 Spinodal decomposition of films

The first thermodynamic description of spinodal decomposition in bulk binary
alloys was given by Cahn and Hilliard in 1959 [10, 11, 12]. They proposed that the free
energy density of binary alloys (in direct analogy with magnetic materials) depended on
their local composition (magnetisation), the gradient of their local composition (exchange
energy), and elastic strain resulting from volume changes associated with local concentration
changes (magnetostriction and anisotropy energy). Mathematically this is can be described
by

) = 57 | dr® (£ (CoD + T VO + Fu{CIY) (2.1)

where V' is the volume of the solid, (f..) is the mean total free energy density, fo, (C(r)) is
the local chemical free energy density, F., {C(r)} is the local elastic energy density which
is a functional of the concentration distribution, C(r), and I' represents the contribution
to the free energy density from the gradient in the local concentration. Cahn and Hilliard
found that in bulk solids elastic strain can suppress the tendency for spinodal decomposition
and thus reduce the critical temperature below which segregation occurs. The consequence

of the gradient energy term, I, is that the infinitely long wavelength mode of segregation



is the first mode to become unstable as the gradient is minimised.

Observations of segregation in III-V semiconductor alloy films at temperatures
above the critical temperature for segregation in the bulk led Glas to reexamine the elastic
strains during spinodal decomposition in films [13]. Glas calculated the elastic energy of
an epitaxial film with a sinusoidally modulated lattice parameter on a substrate where
the direction of modulation is parallel to the substrate interface. He assumed that the
film and substrate were continuous across the interface and that they were both elastically
isotropic with the same elastic moduli (which was independent of concentration). Glas
found the mean elastic energy density of the heterogeneity in the film (with the period of
the heterogeneity of the same order as the film thickness) to be reduced relative to the
mean strain energy density of a similar heterogeneity in an infinite solid by a factor of
approximately 0.45.

In Glas’ calculation it is assumed that the composition is uniform through the film
thickness and only modulated parallel to the film surface. In a real system, however, one
expects that the true surface modes of segregation will have the amplitude of segregation as a
maximum at the surface and decay into to the film (indirect analog of the difference between
Rayleigh waves and bulk sound waves). The form of such a soft surface mode has been found
analytically by Ipatova and coworkers [14] for cubic materials. These workers express the
elastic energy as a functional, F,, {C(r)}, of an arbitrary composition distribution using the
elastic Green’s function for a cubic half infinite solid. They then determine the form of C'(r)
that minimises the total Helmholtz free energy of the system. They examined segregation
modes that extend through the film thickness, modes that are localised at the film interface
and modes that are localised at the free surfaces and found the intuitive result that modes
localised at the surface have the lowest free energy. The composition amplitude of these
surface modes decay exponentially into the bulk of the alloy over a characteristic distance
on the order of the modulation period. Ipatova and coworkers find that in the limit that
this attenuation length is much smaller than the film thickness (i.e., a decomposing half
infinite solid) the elastic energy from the surface mode is reduced relative to that of a bulk
mode by a factor of 2(6171 with c11, ¢12, ca4 the elastic moduli in Voigt notation. Their

ci1+tci2)

calculation neglects composition gradient contributions to the free energy.



2.2.3 Other spontaneous transformations in films

The stability of a planar surface in a tetragonally strained, homogeneous, half
infinite solid has been investigated by Asaro and Tiller [15], and Srolovitz [16]. These
researchers found that any film under a compressive misfit strain is unstable to the formation
of long wavelength undulations.

Glas has considered theoretically the stability of homogeneous flat films and ho-
mogeneous half infinite solids under biaxial compressions to spontaneous transformations
that involve both a morphological change and heterogeneity [17, 18]. He found that the
energy of such a coupled transformation is lower than either a sole composition modulation
or a sole surface undulation. In his analysis he neglects gradient energy and only considers
homogeneous strains.

Jonsdottir and Freund have investigated theoretically the formation of undulations
in the surfaces of films driven by the strain field from a buried network of misfit dislocations
[19].

2.2.4 Extent of transformation

The stability analyses outlined above only determine weather a spontaneous trans-
formation will occur. Intrinsic to these approaches are linear expansions of the thermody-
namic properties in and around the homogeneous state. These linear approximations quickly
break down as the amplitude of perturbations in the transformation’s order parameter grow.
So, although these stability treatments can predict the amplification rate of different modes
of transformation in the early stages of the reaction they cannot predict final structures.
There have been two sets of studies on the evolution of segregation in films.

Voorhees and et al. [20, 21, 22], and Ipatova and coworkers [23] have investigated
the development of segregation during the growth of a film. Their model describes an
observed kinetic segregation instability which can occur during film growth. In this model
only atoms on the surface of a growing film are mobile. As atoms are continually added to
the surface (from the deposition process) surface composition fluctuations are frozen into
the growing film. The stability of the film to fluctuations in the concentration is dependent
on the rate at which atoms are deposited on the surface.

Léonard and Desai have numerically tracked the evolution of heterogeneities in

segregating films [24, 25, 26]. Central to this work is the assumption that the chemical
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Figure 2.1: Diagram showing infinite one dimensional array of pure edge misfit dislocations. These
are regularly spaced with a separation d at the interface of a film of thickness h. The Burgers vectors
all lie in substrate interface.

free energy term in Eqn. 2.1 takes the form of a Ginzburg-Landau potential. Here the
exact form of chemical free energy density is assumed to be unimportant, and the overall
double-welled shape of the potential (which is deemed significant) is approximated with
a polynomial. These researchers have also considered morphological instabilities in films
coupled to ordering reactions [27],2 and a kinetic instability in the presence of an array of
misfit dislocations, where they find that segregation reduces the critical thickness for the

introduction of dislocations.

2.3 Surface strain from a network of misfit dislocations

The first step in examining feasibility of using misfit dislocations to pattern a
substrate is to determine the size of the strain contrast that can be produced. The strain
tensor, eM"(r) arising from a one dimensional array of pure edge misfit dislocations, arranged
in the geometry shown in figure 2.1, can be calculated by summing the contributions from

all the interfacial dislocations in the array. Mathematically this is

eV (r) =e"(r) + Y &(r —idd;h), (2.2)

t=—00

2QOrdering reactions are similar to spinodal reactions in that the system becomes continuously unstable
(i.e., not in a local equilibrium) to the growth of segregating modes. In ordering reactions the unstable
modes of segregation are at the Brillouin zone edge while for spinodal decomposition the unstable modes
are at the gamma point.



where €"(r) is the unrelaxed strain tensor from the lattice mismatch (a step function),
& is the unit vector in the z direction, and €°(r;h) is the strain distribution around an
isolated misfit dislocation buried a distance h below the free surface. This last term can be
calculated, following the procedure outlined in section 3.5 of Hirth and Lothe [28], as the
sum of the strain from an isolated dislocation in a bulk (infinite) solid, an image dislocation,
and a corrective strain field used to cancel tractions on the free surface. For the case of
an edge misfit dislocation, defining the image such that both image and misfit dislocations
have the same Burgers vector and line direction results that the only nonzero element of

the surface strain comes from the corrective stress. This is given by

2, (racai ) = 20— (23)
m(h? + 22)?
where r,_ is the position vector of points on the free surface, and b is the magnitude of
the Burgers vector. Note that this is independent of the Poisson ratio.
Summing Eqn. 2.3 over all the dislocations in two perpendicular sets of misfit

dislocations gives strains at the free surface of

b (Qh + sinh(2h) — 2 cos() (h cosh(h) + sinh(h )))
2

€2a(2,9,0) = ; (2.4)
2d (cos — cosh(h
b (2h + sinh(2h) — 2 cos(7) (h cosh(i?,) + sinh(h )))
Syy(.’E,y,O) = ) . (25)
2d (cos — cosh(h )
Eay(,y,0) = 0, (2.6)
where h = h27r T = 13207[, g = y%”, and d is the dislocation separation. It can be seen that

as the film becomes thick in comparison to the dislocation spacing (i.e., h < d) the strain

becomes % as expected. Figure 2.2 shows the surface strain topography from a network of

dislocations that fully relax a misfits strain, that is, g % (where ag and ay are the
lattice constants of the substrate and film respectively). From plot (d) in figure 2.2 it can
be seen that the amplitude of the residual surface strains can be an appreciable fraction of
the original misfit strain when the film thickness approaches that of the dislocation spacing.
Hence one might expect that using a dislocated thin film as a substrate for the growth
of a second film may provide a strong template for self organised growth. However, from
plot (c) it can be seen that if the film becomes too thin then the dislocations produce

a more complicated strain topography that could be considered as potential energy walls
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Figure 2.2: Variation in the trace of the surface strain tensor over a dislocated film. The trace
is plotted as a fraction of the original misfit strain, 1 — 5;;'1. It is assumed that the dislocations
fully relax the lattice mismatch. Plot (a) is for a film thickness equal to the dislocation spac-
ing, (b) for h = £, and (c) for h = ¢. Plot (d) shows the change in fractional strain amplitude
(eT7(0,0,0) — 7 (7, 7,0)) with h. Note that the decrease in strain amplitude at small film thick-
nesses is because the film thickness sets the decay length of the dislocation strain field, if this is too
small the dislocations do not relax the film in between the dislocations. This can be seen in plot (c).
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Figure 2.3: Diagram showing infinite homogeneous isotropic elastic film on a rigid substrate with
a periodic lattice constant. The origin is at the free surface of the film.

or trenches. This is of particular relevance to the work of Kern and coworkers [9] who
experimentally grow a self ordering array of Ag nanoclusters on a dislocated Ag(111) film
only two monolayers thick (of course at these thicknesses the validity of elasticity theory

also becomes suspect).

2.4 Stability of a film on a strain patterned substrate

2.4.1 Model

The stability of a homogeneous film deposited on top of the dislocated film dis-
cussed above is now considered. The rudimentary model of spinodal decomposition em-
ployed here is depicted in Fig. 2.3. An elastically isotropic binary A-B alloy is deposited on
a rigid substrate (i.e., it is assumed that the film is much more compliant than the substrate
as might be the case for an FCC metal on a semiconductor substrate) with a periodically
varying lattice parameter along the z-direction only. The pure metals A and B, and all their
alloys, are assumed to have identical surface energies. The film is initially compositionally
homogeneous, with a concentration C, of B, such that there is no net lattice mismatch with

the substrate. This results in a sinusoidal interfacial strain in the film of
€zz(T, —h) = €5 cos(ksT), (2.7)

which can be considered a Fourier component of the misfit dislocation strain field given in
equation 2.6. The elastic moduli of the film are assumed to be independent of composition,

and the two species comprising the film (A and B) have different molar volumes (V4 and
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VB respectively). Any local change in concentration is accompanied by a change in the local
equilibrium lattice parameter.

To analyse the stability of the homogeneous film with respect to segregation it is
necessary to determine the change in the mean free energy density of the film (given in Eqn.
2.1) associated with the introduction of a concentration wave with infinitesimal amplitude.
The analysis presented here follows closely that of Cahn [11], and is similar in spirit to the
prior analyses of thin film spinodal decomposition [13, 14]. In performing the linear stability
analysis, one must assume a form for the perturbation. Here the concentration is chosen to
be

C(z,y,z) = Cp + AC cos(k.x), (2.8)

with AC' < C,. Note that the composition fluctuation is assumed to be uniform throughout
the film thickness. It is not known a priori how the amplitude of the composition wave
might change through the film thickness. Hence, the assumed structure of this perturbation
may, in fact, preclude the most unstable mode. However, if the film is unstable with respect
to the growth of this constrained composition fluctuation, then the film is certainly unstable
to the growth of the lowest energy concentration fluctuation. Further, in the limit h < &1,

the assumed form is correct.

2.4.2 Chemical contributions to free energy

The chemical free energy density, in 2.1 is approximated to second order in AC' by

a Taylor series expansion about the initial concentration,
foAC? cos? (k)
2! ’

fan(C) = fo + fLAC cos(kcz) + (2.9)

with f; = % i Spinodal decomposition can occur only if the compositional free energy

—vo

surface is concave down, i.e., fo < 0.

The gradient term in Eqn. 2.1 can be derived by also expanding the local chemical
free energy density in terms of the local gradient in the composition [29]. Symmetry dictates
that the first nonzero term in this expansion contains |[VC(r)|*>. More intuitively one can
see that I" plays the role of an excess interfacial free energy. Averaging the local chemical
and local gradient contributions to the free energy over the film volume and combining them

in the total mean chemical contribution to the free energy density gives

(fre) = fo+ (% + %’ﬁg) AC?, (2.10)
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2.4.3 Elastic contribution to free energy

To complete the computation of the free energy change associated with a com-
position fluctuation, one must compute the associated elastic energy, F {C(r}). This is
a functional of the concentration distribution because the elastic strain around any local
volume change drops off as ~ r—3. Fixing the shape of the concentration profile enables the
resulting elastic energy density distribution, F,(z, z), to be calculated. The total strain ten-
sor, €"(z, z), has three components; €™ (z, z) = €5(z, z) + € (z, z) + €°(z, z). Here €%(z, z)
is the strain imposed by the film being epitaxial on a substrate with a varying lattice con-
stant. This only depends on the amplitude, £, and wave number, kg, of the substrate strain
imposed at the interface (Eqn. 2.7). The term &%F(z, z) is the purely dilatational stress
free strain that accompanies a local change in concentration. This is approximated to first

order in the local concentration change as

AVAC

(z,2) ~ 3 cos(zk), (2.11)

€

where AV is the difference in the molar volumes of the two components, Vg — V4. While
the film changes volume locally it must remain continuous (i.e., the total displacement
vector must be continuous everywhere). This requirement produces an elastic strain field,
€%(z, z), such that " (z,z) satisfies the equations of compatibility everywhere. Both the
stress free strain and the compatibility strain depend only on the amplitude, AC, and the
wavenumber, ., of the heterogeneity (Eqn. 2.8). Formally the elastic energy density is
Z?,j:l% (6% + Efj) oij, so it is only necessary to determine the strain field imposed by
the substrate and the compatibility strain to find the elastic energy. This problem may
be solved by writing Hooke’s law incorporating the stress free strain, and then solving the

appropriate partial differential equation. This approach, while obviously correct, is not the

most intuitive. Here, an alternative, more intuitive solution is presented.?

2.4.3.1 Strain imposed by substrate

The substrate imposes a condition of plane strain that is independent of the con-
centration fluctuation, so €°(z, z) must independently satisfy the condition of compatibility,

and thus can be found by solving the biharmonic equation,

Vi =0, (2.12)

3Tt can be shown that the approach presented here yields a solution identical to that arising from the
straightforward, but less intuitive, method.
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where 1 is the Airy stress function. This equation is simply the plane strain compatibility

condition ) ) )
0“pr 07y, 0%eyy
-2 = 2.1
022 + Oz2 00z 0, (2.13)

where the strains are written in terms of the stresses (using Hooke’s law). The stresses are

in turn written in terms of the Airy stress function which satisfies the equilibrium equations,

00zs 00y,

5 Pl 0, (2.14)

ng 8;;“ 0, (2.15)
by defining the stress function such that

Oue = ?;715, (2.16)

Ozz = ?)2715, (2.17)

o = P oy

The general form of the stress function for the current problem is found by separation of

variables to be
Wz, 2) = (A sin(rz) + cos(mc)) ( (a0 + a12) sinh(kz) + (Bo + frz) cosh(m)). (2.19)

€3(z, z) is computed by finding the integration constants (A, ag, a1, Sy and 1) that satisfy

the boundary conditions of no surface tractions and coherence with the substrate.

2.4.3.2 Compatibility strain

The compatibility strain, €°(z, z), is found by first considering the elastic strain
tensor, €®(z), of a bulk solid containing a concentration plane wave, and then adding a
corrective strain to satisfy boundary conditions. The concentration plane wave in a bulk
solid has been studied extensively by Cahn [11], who found the solid completely elasti-
cally relaxed in the direction of the concentration modulation and completely elastically

constrained in all directions normal to it. This gives a stress state in the bulk solid of

ony(®) = oy.(z) =0z, (z) =0, (2.20)
on(z) = 0, (2.21)
0,.(x) = oy lr) = —2ueci v cos(ke), (2.22)
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where €, = AV?’AC , and p is the shear modulus.

This “bulk” like strain field can be transformed into the strain state for a film
containing a concentration perturbation by the sequential application of two plain strain
deformations. The first enforces the condition of equilibrium at the free surface by apply-
ing to it tractions —o%,(z,0)2 whilst constraining the interface to not move. The second
corrective deformation strains the interface of the film by — (1 + %) €c cos(kcx) whilst
generating no tractions on the free surface. This strain opposes both the stress free strain
and the Poisson expansion in the z direction and brings the film back into atomic registry
with the substrate.

The correction deformations are plane strain, and since both €3(z, z), and €®(z) +
€5 (z) independently satisfy the condition of compatibility then the correction deformations
also satisfy the biharmonic equation and can be found by forcing the stress function in (2.19)
to meet the boundary conditions described above.

The utility of this (somewhat long winded) approach to finding °(z, z) and €°(z, 2)
is that the mean elastic energy density of the film can now be calculated straight forwardly
as the sum of the elastic energy of a plane wave heterogeneity in a bulk material plus the
work done as the substrate strain and corrective deformations are applied. This procedure

yields an elastic energy density

(Ea) = (Epa) — acc(ﬁc)(l + V)Qfg (2.23)
+ ass(ils)(l - V)25§ - 5"63,’600’63(71‘8)(1 - V2)£c£s;

with d,, x. the Kronecker delta, h, = hke, hs = hrg, and

(Bou) = ue?ifz, (2.24)
ace(h) = 8W,(R)sinh? (ﬁ/z) (B +(1—2v) sinh(o)), (2.25)
ass(h) = Wo(h) (25+sinh(2ﬁ)), (2.26)

aes(h) = 2Wo(R)(2h — 2hcosh(h) + 2(1 — 2v) sinh(R) + sinh(2h) ), (227)
- - -1
Wolh) = —F (54202 — 40(3 - 2) + (3 — 4v) cosh(2R)) . (2.28)
h(1—v)
In the limit that the film is very thin in comparison to the interface strain period (ksh — 0)

the mean elastic energy density becomes

2

(Ba) > £ ” <53(1 + )+ 2 = O mecss(L+ y)> . (2.29)
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In the limit of the thick film the elastic energy becomes that of the infinite solid in Eqn.
2.24.

2.4.4 Film Stability
2.4.4.1 Linear contributions

An infinitesimal fluctuation will grow if the mean total free energy density of the
system ((F )+ (Fr¢) from Eqn.s 2.23 and 2.10) is decreased with increasing amplitude. The
only contribution to the total free energy linear in AC, defined to be A f,, is proportional

to Ok, and is given by
AVAC

3

The coeflicient acs(ﬁ) is positive for all i, so the film is unstable with respect to the growth

Afin = —aes(hs) (1 — v2)eg (2.30)

of a composition fluctuation with the same wavevector as the substrate strain. Since the
reduction in free energy due to this term is linear in AC, this mode is the most unstable
during the initial stages of decomposition. Furthermore the instability of the film to first
order in AC' is dictated entirely by the elastic properties of the film: chemical contributions
to the free energy do not affect this instability. Therefore this instability occurs in all alloy
films with AV # 0 on a strained substrate regardless of whether or not the bulk system
displays a miscibility gap. Further, this instability can appear at technologically relevant

wavelengths smaller that those accessible to chemically driven spinodal decomposition.

2.4.4.2 Quadratic contributions

At all other wavelengths, the stability of the thin film to concentration fluctuations

is determined by terms of order AC?. These terms are defined as A faquaa and are given by

B 2
s = (152 — el (14 5 ) a7, (231)
with )
AV? (1
q(Ke) = fo + 2Tk + 4p—— (1+ M)_
9 (1-v)

The film is unstable with respect to the growth of composition waves with wavevector k. if

(2.32)

the sum in 2.31 is negative, whilst the stability of a bulk solid depends on the sign of g (k).
The only negative term in the simple quadratic equation 2.32 is the constant f5, so for bulk

alloys the infinitely long wavelength mode is always the first to go unstable.
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Figure 2.4: Panel (a) Plots of the dimensionless free energy curvature with respect to the growth

of a plane wave composition fluctuation with wavevector £, nm ! in a film on a rigid unstrained

substrate. The films have physical properties ﬁ =—2 and uAFT = 1 nm?. These numbers have

been estimated using bond counting arguments for a system of two FCC metals near the limit of
metastability. In the limit that the film becomes infinitely thick the limits of the domain of unstable
wavevectors tend to k. = 0. These unstable modes are kinetically stabilised due to the long diffusion
distances involved in their growth. Panel (b) shows the range of unstable wavelengths as a function
of film thickness for the same alloy. The dashed line indicates the position of the minima in plot (a).

The function ac.(h) is zero in the limits that A — co and A — 0 (the bulk solid
and the infinitely thin film*), and positive everywhere in between. Based on this it, can
be seen from Eqn. 2.31 that alloys which are strain stabilised® when in the form of a bulk
solid may be unstable when in the form of a film. Segregation in such films arises from the
elastic relaxations associated with the free surface.

The domain of unstable surface segregation modes in a film that, as bulk, is strain
stabilised is bounded, as demonstrated in Fig. 2.4. St. Venant’s principle dictates that
the elastic relaxations associated with the free surface decay over the wavelength of the
heterogeneity, thus the very short wavelength modes are not unstable because there is
comparatively® little surface relaxation. The very long wavelength modes are stable because
the strain fields from the surface relaxation are cropped by the film thickness. As the film
thickness increases the domain of unstable wavelengths becomes wider and longer, so that
for a half infinite solid the elastic energy of the very long wavelength modes is reduced

relative to those in a bulk solid. This can clearly be seen from the plots in figure 2.4. The

4The former case is elastically constrained in the y-z plane whilst the latter case is constrained in the z-y
plane.

Here strain stabilised means to have a negative curvature of free energy, f», but be prevented from
becoming unstable by the elastic strain energy.

5The comparison is made with the bulk.
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long wavelength modes are, however, kinetically stabilised due to the long diffusion lengths
that must be traversed during their growth.

It is reasonable to expect that a closed domain of unstable modes will also be
observed when the rigid substrate constraint is relaxed, and the compatibility strain field
penetrates the substrate. In this case, although the surface strain fields are no longer

truncated by the substrate, the driving force for segregation is limited by the film thickness.

2.5 Extent of segregation

Simply knowing that an alloy film will segregate is not sufficient for deciding if a
film is a suitable precursor for producing self-assembled nanostructures. It is also necessary
to understand the extent to which segregation will occur and the relative amplification rates
for composition fluctuations with different wavelengths. The driving force for the evolution
of a composition fluctuation is the variation in the mean total free energy, (dfi), that
accompanies a variation in the concentration, dC(r). Following Cahn the general form of

this variation is written as

) = [ 5

where the composition distribution is given by C(r) = C, + C(r). The term in brackets

fi+ foC —2TV2C + % &adv, (2.33)

in Eqn. 2.33 is the chemical potential, n(r), so if it is assumed that the evolution of
the composition distribution is diffusion mediated then the change in concentration with
time is given by the diffusion equation % =V (MVn(r)).” Here M is a mobility coefficient
(assumed isotropic) chosen to be independent of concentration. The diffusion equation must
be solved such that the change in concentration with time is consistent with the variation
in concentration for which 7n(r) is calculated (Eqn. 2.33). In general the assumed form for
the composition fluctuation does not satisfy this requirement, and one cannot predict the
early time amplification rate of the unstable modes presented above.

In the limit that the film is very thin (in comparison to the wavelength of a compo-

sition fluctuation) the elastic energy Eqn. (2.29) tends to that of a film in which there is no

z component of the strain. In this limit the elastic energy density is no longer a functional

"It is more common to express a chemically driven flux —M’CVx(r) where the mobility M’ = Dj (with
D the diffusion coefficient, 3 the reciprocal thermal energy. Here, however, it is assumed the C, < C(r),
and so the concentration is incorporated into the mobility M.



19

of the whole concentration distribution but only depends on the local concentration as the
film is fully constrained by the substrate. Now the assumed form of the composition fluc-
tuation (Eqn. 2.8) becomes meaningful, and one can solve for the early time (i.e., linear)
amplification rates.

The diffusion equation for the thin film is rewritten

aC

_ 25 44
= M ( £2V2C — 2TV C) (2.34)
2 (1+v) (28V _, - )
+ §M“AV(1 ) (TV C + g5k cos(kszx) ) -

Solving Eqn. (2.34) subject to the constraint that the film decompose only in the

z direction gives
-~ 1 AV?
(1—-v) q(ks)

9]
ke ,—MK2q(Kke)t
+ / d,§6¢ﬂce cTo edq( c)’

—0oQ

Wl N

(1 - e—Wq(“s)t) (2.35)

cos(ksx)

where ¢, is the x.th Fourier component of the initial concentration distribution. As is
the case with a bulk solid all fluctuations with g(k.) < 0 will grow exponentially until the
assumed linearity is no longer valid. Fluctuations with ¢(x.) > 0 will decay to zero with
the exception of the fluctuation in phase with the substrate strain that approach a steady

state amplitude:

~ . (1+v)pav? 2
C(o0,z) = ssm a0n) cos(ﬁsa:)g. (2.36)

An estimate of the amplitude of this fluctuation for a material in which bulk spinodal
decomposition is inhibited by the elastic strain indicates that the steady state amplitude
of this concentration wave can be large enough to invalidate the linear assumptions made
here. So, the effect is expected to be significant.®

The analysis presented here is deterministic and does not contain noise. If the
film is initially homogeneous this model predicts that the only mode that grows is the mode
that relaxes the strain imposed by the substrate.

Finally, it should be noted that only a single Fourier component of the substrate
strain was considered. It can now be seen that if the substrate has a long period with a

more abrupt change in strain® then the strain will contain Fourier components with short

8Values for I and f» were estimated for a typical immiscible FCC metal alloy by bond counting arguments
following Khachaturyan [29].
9This could be achieved by lithography, or by slicing multilayer structure at a glancing angle.
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wavelengths. It can be seen by integrating equation 2.35 that the early time amplification
rate of a given mode is proportional to the square of its wavenumber. Hence, the combina-
tion of fast development of short wavelength modes and the effect of Gibbs overshoot could

allow uniform fine-scale structures to be grown from a large scale lithographic pattern.

2.6 Summary

In this chapter the calculation of the residual strain on the surface of a misfit
dislocated film was presented. It was then demonstrated that, in theory, alloy films ho-
mogeneously deposited on such a film will segregate, and that initially the most unstable
heterogeneity has a wavelength determined by the periodicity of the substrate. It was also
shown that films may also be unstable to the considered fluctuations in the absence of a
periodically strained substrate. Under these circumstances, the unstable wavelengths are
bounded and may be as short as tens of nanometres. While there may be concentration
fluctuations more unstable than those considered here, the current calculation establishes
rigorously the instability of some thin films to spinodal decomposition at the nanometre
scale. In the thin film limit, the assumed form of the composition fluctuations is the ex-
pected form, and the linear amplification rates can be obtained. In summary, it appears
that spinodal decomposition in the presence of a periodic strain is a viable candidate for

the self-organised growth of nanostructures.
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Chapter 3

Nucleation and growth of islands

during epitaxial film deposition

3.1 Introduction and background

In the previous chapter it was demonstrated that a strain pattern will lead to
segregation in an alloy film. However, strain will also influence the deposition and growth
of a film. In this chapter some issues arising during the early stages of deposition and
growth of an epitaxial film on a strained substrate are examined.

When an epitaxial film is grown by physical vapour deposition (PVD) atoms ar-
rive at the substrate surface individually and move around on it randomly. Initially the
concentration of lone atoms rises. The free energy of this sea of adatoms is reduced by
the aggregation of monomers to form an archipelago of adatom clusters or “islands.” Once
these clusters have been nucleated, additional atoms arriving at the surface are more likely
to encounter an island than another diffusing monomer. Thus, existing islands grow with
little further nucleation of new island. Eventually these islands coalesce and a contiguous
film is formed. Surface strain impacts both the thermodynamic driving force for aggregation
to islands and the kinetics that mediate it.

The strain from a network of misfit dislocations was calculated in section 2.3
where figure 2.2 shows the variation in the trace of the surface strain tensor across the
substrate. The adsorption energy of an adatom on the surface of a substrate (the energy

required to remove the atom from the surface) is a scalar property, that, at least to first
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order, is proportional to the trace of the surface strain. Applying such an interpretation
to figure 2.2 reveals a (local equilibrium) potential energy surface with a regular array of
low energy basins, and thus thermodynamically preferential zones for clustering of adatoms.
The surface mobility of an adatom on the other hand is a tensor property and so depends on
the whole surface strain tensor, and possesses the same symmetry as the deformed crystal.
This means that in plots (a) and (b) of figure 2.2 near the tops of the hillocks and the
bottoms of depressions the mobility will be different but isotropic, whilst in the saddle
regions the kinetics of transport will be anisotropic. Moreover it is not known a priori in
which regions the kinetics will be fastest, nor if there will be a change in the dominant
diffusion mechanism from region to region.

The topic of this chapter is the effect of strain and its influence on transport
kinetics. Consideration is limited to homoepitaxy on the (001) surface of FCC metals.
FCC metals do not have strong angular bonding. These surfaces are square lattices that
have isotropic diffusivities, and for the most part, do not reconstruct (Au, Pt, and Ir being
among the exceptions). The seeming simplicity of these systems makes them a good starting
point to investigate some of the subtle behaviour that arises due to strain. A possible new
mechanism for surface diffusion—the surface crowdion—is outlined, and the implications of
this transport mechanism for the early stages of film growth are examined qualitatively.
The ultimate goal of the remainder of this thesis is to determine if the surface crowdion,
that so far has only been predicted to exist theoretically, can be observed experimentally

through island growth experiments.

3.1.1 Strain, diffusion, and surface crowdions

It is widely understood that diffusion on FCC (001) metal surfaces happens by

one of two mechanisms;'

a simple hop one atom spacing in a (110) direction, or a displacive
reaction one lattice parameter in the (100) direction. Cartoons of these processes are shown
in figure 3.1. In the displacive mechanism the diffusing adatom sinks into the surface and
replaces one of the nearest neighbour substrate atoms which, in turn, is “kicked out” to the

surface. In the case of homoepitaxy, as the atoms are indistinguishable, it may be considered

!There have been theoretical studies that found low energy barriers for more complicated diffusion mech-
anisms, however, the calculated energy barriers are not as low as those for the mechanisms considered here,
nor is there any experimental evidence for them [30, 31].
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Figure 3.1: Cartoons of surface diffusion mechanisms on FCC (001) metal surfaces. Panel (a)
depicts simple hopping whilst panel (b) shows the displacive “Kickout mechanism. In both diagrams
the hatched circles depict the original (001) surface atoms while the unshaded circle depicts the
original adatom. The two diagrams show the atom positions before and after the mechanism has
occurred.

that the original adatom has hopped diagonally.? A consequence of the diagonal movement
is that an adatom diffusing by “kickout” is restricted to visiting a sublattice of surface sites
in the same way that a bishop in a game of chess must remain on the same colour squares
that it started on. It is known, based on theoretical predictions of Feibelman [32], Boisvert
and Lewis [33], Xiao et al. [34] and Mehl et al. [30], and detailed experiments by Kellogg
[35] (measuring site visitation maps by field ion microscopy), that Cu on Cu diffuses by
the hopping mechanism, whilst Al on Al diffuses by the displacive mechanism. Recent
theoretical work by Xiao, Greaney and Chrzan [34], and Voter et al. [36] however, shows
that the energy barriers for both of these mechanisms respond differently to strain and that
by straining Cu it is possible to switch the dominant diffusion mechanism from hopping to
kickout. Moreover in their work Xiao et al. discovered that highly non-tetragonally strained
Cu could exhibit a new adatom transport mechanism—a surface crowdion.

The surface crowdion is a metastable surface defect (shown in figure 3.2) in which
an adatom is absorbed into a close packed atomic row in the substrate. The extra atom is
accommodated in the surface by 8 or 10 atoms in a single atomic row all shuffling along
that row. The row along which the displacements are extended lies in the (110) direction
with the least compressive strain, hence in a homogeneously strained material all crowdions
will be extended in the same direction. Crowdions in bulk materials were hypothesised as

a diffusion mechanism in the 1950s. However, there is little experimental evidence for them

2This is only applicable when the atoms are quantum mechanically indistinguishable, i.e., in self-diffusion.
The rate of transport of tracer atoms will be very much lower that the rate of self-diffusion.



24

Crowdion

Compression

O PR CRE SRR
g A A T ST
g liegsYvs SQGPIPY 00t

. S LA TP=AL " 77 L

A PR A T PRI A M e
Compression- Qe‘ggggg‘g%w:

e
Sesg =S Prz
AT
~l

Figure 3.2: Perspective picture of a crowdion on the (001) surface of Cu. Atom positions were
calculated using NEB and EAM by Xiao et al. [34]. Arrows indicate the direction of compressive
strain.

with the exception being in radiation damaged materials where the existence of crowdions is
inferred from transmission electron microscopy studies of vacancy clusters sizes, and internal
friction experiments [37, 38].

Xiao et al. predict the structure of the surface crowdion in Cu by using the nudged
elastic band method (NEB) to explore phase space® for a minimum energy trajectory be-
tween the initial and final configurations of the kickout mechanism shown in panel (b) of
figure 3.1. They calculate the energies of configurations in phase space using the embedded
atom method (EAM), an empirical potential suited to calculating the total energy of con-
figurations of large numbers of FCC metal atoms. The strain at which they calculate the
crowdion to be come the low energy diffusion mechanism is large; a 2% uniaxial strain in
the plane of the surface.

In a single component system, once a crowdion is formed, it is not possible to
distinguish the original adatom from the other atoms at the centre of the crowdion. Only
by looking at the distribution of atomic displacement along the close packed row does the
crowdion make itself apparent, thus the crowdion may be considered a quasiparticle that
carries one quantum of “atomic displacement” parallel to the row. Figure 3.3 shows the
atomic displacements along a crowdion row in Cu. It can be seen that the displacements
are distributed over approximately 10 atoms. Moving the centre of the crowdion one atom
spacing along its extended direction involves only small changes in the individual atom

displacements, thus the energy barrier for moving the crowdion along its row is very small

3Phase space here is the 3N space defined by the coordinates of the N atoms.
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Figure 3.3: Plot showing the dimensionless displacement of Cu atoms along the crowdion row
calculated by Xiao.

(O(0.001) eV, less than thermal energy at room temperature). The energy required to move
the crowdion from one row to an adjacent row, however, is larger than the decay energy of

the crowdion.

3.2 Crowdion motion

As the surface crowdion is metastable, has little or no barrier to moving, and carries
a unit of atomic displacement it would seem that, in single component systems, crowdions
would mediate rapid self diffusion. If crowdions exist in alloys they would not provide a
mechanism for long range intermixing, but they would provide a mechanism for rapid mass
transport. That is they would allow a material to creep quickly in response to an applied
stress but would not allow rapid segregation. Moreover as the total population of crowdions
are only mobile in one direction, crowdions would mediate highly anisotropic diffusion. It is

argued in this section that the crowdion may provide a long range self-diffusion mechanism.
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Figure 3.4: The Frankel-Kontorova model considers the motion of a chain of atoms connected by
springs of strength ki, sitting in a potential of amplitude 3 kg“ and wavelength a.

3.2.1 Crowdion kinetic energy and effective mass

The kinetic energy of a moving crowdion is the sum of the kinetic energy of all

atoms that are displaced as the crowdion moves
Ey = —m v? Z —mai;?. (3.1)

Here m is the atomic mass, m* is the effective mass of the crowdion, v, is the velocity of
the crowdion, w; is the displacement of the ith atom, and the sum is performed over all
the atoms in the crowdion. The problem of a moving crowdion can be represented by the
Frankel-Kontorova model [39, 40]. This model considers the displacement, u;, of the ith
atom in a one dimensional chain of particles connected by spring (of strength k1) sitting in
a sinusoidal potential (of amplitude % and wavelength a) as shown in figure 3.2.1. The

equation of motion of the continuous form of this problem is the sine-Gordon equation which

has travelling kink and antikink solutions of the form

1
2 2 2
u(z,t) = - arctan (i exp (%) ’ (z — vt)) . (3.2)

This is the equation of a soliton moving with a velocity v, through a medium of density p.*
The shape of the soliton does not change as it moves but it becomes narrower as v — %
It is found numerically that the solution changes very little when the problem is discretised
(i.e., atoms are reintroduced), and so as a first approximation it may be assumed that a
crowdion moving at low (sub relativistic) velocities maintains a constant shape. Making
this approximation allows the velocities of the atoms in the crowdion to be estimated to

first order as

Ve
?a
“It should be noted that there is no energy barrier for moving the soliton, and the energy barrier for the

discretised problem, calculated numerically, is extremely low. This adds credibility to Xiao et al.’s claim
that they cannot resolve the energy barrier for crowdion motion using the embedded atom method.

u',z- ~ (uz - ui,l) (33)
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where b is the equilibrium atom spacing along the crowdion direction (and the net displace-
ment carried by the crowdion, analogous to the Burgers vector of a dislocation). Substitut-

ing this into 3.1 leaves the effective mass of the crowdion as
. (wi — ui—1)’ 5.4
m =y ) (3.4)
i

Applying this formula to the computed crowdion structures for Cu gives the effective mass
for the crowdion in Cu % = 0.071. More intuitively one can see that if the displacement is
spread more or less uniformly over n atoms then the ratio of effective mass to atomic mass

must be on the order of %

3.2.2 Non-diffusive kinetics

Based on the low energy barrier for moving a crowdion in comparison to its decay
energy, and because of the small effective mass of the crowdion, it is hypothesised that the
surface crowdion may be “born” with some kinetic energy. That is, some fraction of the
potential energy that the system must posses as it passes through the transition state on
its way to forming a metastable crowdion is converted to kinetic energy of that crowdion
(the rest excites phonon modes). Such an occurrence would give the crowdion a large initial
velocity when it is formed and implies that the motion of the crowdion itself is non-diffusive.

Calculating what fraction of the saddle point potential energy might be converted
to kinetic energy is nontrivial. However, one can estimate the crowdion velocity by assum-
ing that it posses kinetic energy of the order of the thermal energy. Based on this it is
found that a crowdion in Cu at room temperature will move at ~ 750 ms~'. While still
subsonic, the large magnitude of this speed indicates that a more elaborate calculation of
the crowdion speed is needed, a calculation in which relativistic effects and phonon radiation
are accounted for. The simple calculation does, however, indicate that crowdion velocities
can be substantial.

Classical solitons pass through each other without effecting each other but it is
not known a priori how colliding crowdions interact. Xiao has shown [41], however, that
the decay energy of a crowdion is reduced when it encounters a second adatom or island on
the surface.

The arguments outlined above can be combined into a model of how crowdions

might mediate self-diffusion on a homogeneously strained FCC (001) Cu surface. In this
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model, a crowdion, once born, will shoot off in one direction radiating phonons as it goes.
It will travel, on average, some characteristic distance until it is scattered and or decays.
The mean displacement between where a crowdion is created and where it decays will be
depend on the phonon scattering, temperature, and the decay free energy of the crowdion.
Should the crowdion encounter any surface adatoms or islands it is assumed to decay and

eject an atom to the surface which binds to the surface feature.

3.2.3 Diffusion mediated by surface crowdions

The above model of crowdion motion implies a coarse-grained picture in which
the self-diffusion of an adatom by crowdions alone is similar to that of a one dimensional
random walk making large jumps on a lattice. In this analogy the crowdion’s bursts of
motion are akin to the walker jumping large numbers of lattice spacings in each step, with
a distribution of step lengths centred around a mean step size. The walker is considered to
have “visited” or sampled each site it passes through between its initial and final position
in each jump. The real crowdion is slightly more complicated than this, because of the
A-B-A-B stacking sequence in the (001) direction of FCC lattices. The crowdion’s atomic
row in the surface lies between two rows of lattice sites on the empty surface. When a
crowdion decays it ejects an atom to the surface the new adatom must sit in one of the
vacant surface sites on either side of the crowdion row. Since the crowdion is metastable,
the direction in which symmetry is broken when the crowdion decays is not coupled to the
original position of the adatom that created the crowdion. In this way the crowdion can
mediate diffusion normal to its direction of travel. The second consequence of the A-B-A-B
stacking is that the crowdion samples each of the surface lattice sites it in the two parrallel
rows as it moves between in each jump.

The macroscopic diffusion tensor, D, is related to the microscopic diffusion pro-

cesses by [42]

1

D= Z (r; @ T3) Ry, (3.5)
7

where r; is the displacement vector, and R; is the rate of the ith jump process. The sum

is performed over all possible diffusion processes. For the case of surface diffusion in which

adatoms move in the z and y directions by hopping at rates of R, and R, and crowdions
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(extended in the z direction only) are created at a rate R, the diffusion tensor is

2 2
o | o+ delie) 0 . (3.6)

p=%
4 0 (Ry + %)

Here d? is the mean squared number of lattice sites the crowdion jumps before decaying, and
a is the FCC lattice parameter. It can be seen that even if the rate of crowdion formation is
two orders of magnitude lower than the hopping rates, crowdions can impact the diffusion
tensor because the displacement term enters squared.

The quadratic dependence on the jump length is of particular importance. On the
microscopic level it means that a small number of “big” events can be of equal importance
as a very large number of small events, a principle which is the essence of the Weierstrass
random walk.® The practical benefit is that it may be possible to detect the existence
of crowdions from diffusion experiments without having to create 2% uniaxially elastically

strained Cu films, a task that could prove challenging.

3.3 Detecting crowdions

Thus far crowdions have only been “seen” in embedded atom calculations, so
establishing their existence experimentally is of utmost importance. This task is fraught
with difficulties, the first of which is producing substrates with the strains under which
crowdions appear. This can certainly be done in small areas (from misfit dislocations say)

but is more tricky for large area studies®.

3.3.1 Direct observation

Should such substrates be created the high mobility of crowdions would probably
make them invisible to invasive surface characterisation techniques such as scanning tun-
nelling microscopy (STM) and atomic force microscopy (AFM). As crowdions locally disrupt
the translational symmetry of the lattice it is reasonable to expect that crowdions, if they
exist, will affect surface diffraction patterns produced from low energy electron diffraction

(LEED), and low energy He ion scattering.

5A Weierstrass random walker makes jumps of variable length where order of magnitude larger jumps
occur with order of magnitude lower frequency [43].

5Tt would require growing Cu on a tetragonal or orthorhombic substrate with its ¢ axis in the plane of
the interface.
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3.3.2 Tracer diffusion

The most obviously noticeable effect of crowdions is that the original surface
adatom is not the one which is transported. This will be apparent in a tracer diffusion
experiment in which a radioisotope of Cu is deposited on naturally occurring Cu. Isotopes
61Cu, 54Cu, and 67Cu have halve lives of 3.3 hours, 12.7 hours, and 2.5 days and decay to
61Ni, 64Zn, and 57Zn respectively.

Comparing the extent to which surface adatoms have travelled, and the extent to
which the decay products of the radioisotopes (Ni and Zn) have moved will reveal if the
diffusion is occurring by a displacive mechanism such as the kickout or the crowdion. If
the islands of adatoms on the surface contain predominantly naturally occurring Cu then
the diffusion mechanism is most likely displacive. The two displacive mechanisms can be
distinguished by looking at site visitation, or anisotropy. If the crystal is strained such that
the square lattice of surface sites becomes rectangular (e.g. uniaxial strain in the (110)
direction), then the kickout mechanism remains isotropic (in the frame of reference of the
undistorted lattice) whilst crowdion formation is inherently anisotropic. Alternatively one
could observe the set of sites visited by a diffusing adatom. Kickout diffusion is restricted

to a sublattice empty surface sites whilst crowdion diffusion is not.

3.3.3 Island growth and quasi-hexagonal reconstruction

It is possible that evidence of the long-range crowdion diffusion mechanism hy-
pothesised above will affect island growth phenomena. To investigate this one can proceed
phenomenologically and determine the implications of the long-range mechanism on island
nucleation and growth. The aim is to determine if crowdions give rise to discernibly “differ-
ent” island growth than would occur with just highly anisotropic hopping. Such a scenario
could lead to experiments which either corroborate the existence of crowdions, or refute
that this mechanism of transport occurs (N.B. a negative result of such an experiment does
not rule out the existence of crowdions, only the method by which they are hypothesised
to move). This is the topic of the rest of this thesis.

Using EAM Xiao has predicted metastable crowdions in Cu and Pt but not in Al
Pt along with Au and Ir exhibit a quasi-hexagonal surface reconstruction [44, 45, 46, 47, 48|
in which the (001) surface becomes terminated by atoms resembling a (111) plane. The

reconstruction is shown schematically in figure 3.5. An extra row of atoms is inserted into
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Figure 3.5: Schematic representation of the quasi-hexagonal reconstruction on a (001) FCC surface.
The hatched circles represent the unreconstructed (001) surface. The unhatched circles represent
the 4 x 5 reconstructed layer. The unit cell of the FCC lattice is shown with dotted lines. The areal
density of atoms in the reconstructed layer is ~ 20% greater than the unreconstructed layer.
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the surface in the [110] direction for every 5 rows in the [110] direction of the unreconstructed
surface. To accommodate the strain, alternate [110] rows shuffle half an atom spacing in
[110] giving the atoms a hexagonal coordination, and generating six atom wide corrugation
on the surface. The [110] direction of the reconstructed layer does not remain commensurate
with the lattice below it but an extra atom is added to every [110] row for every 4 atoms in
the row. The reconstructed layer is only commensurate with the underlying lattice every 4
atoms in the [110] direction. For Pt and Au i=25 and 34, respectively [47, 48].

Both diffusion and island growth on the hexagonally reconstructed surfaces are
found to be highly anisotropic [48, 49] with very fast diffusion in the [110] direction. Lin-
deroth and coworkers measure the ratio of diffusion coefficients in the fast and slow directions
to be on the order of 10® at room temperature. This is surprising given that the surface,
at least to first approximation, is hexagonal! The anisotropy is attributed to the surface
corrugation [44, 49], however, to date no satisfactory explanation of how the corrugation
influences diffusion has been given.

The extra atom every i atoms in each of the [110] rows forms a soliton like struc-
ture [47]. Although the structure of these solitons is very different from the crowdion in

the unreconstructed surface they might be expected to mediate diffusion with the same
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long jumps that are hypothesised for (001) crowdions. Hence, studying this type of diffu-
sion phenomenologically may provide insight to diffusion on FCC (001) quasi-hexagonally

reconstructed surfaces.

3.4 Island growth

3.4.1 Background

In the early stages of epitaxial film growth adatoms muster into small groups. This
happens regardless of whether the film grows by Frank-Van der Merwe growth, Volmer-
Weber growth, or Stranski-Krastanov growth”; at some point the film must be nucleated.
It is easy to see that there must be some critical size, ¢, of these clusters such that the free
energy of the system is reduced if one atom leaves a cluster of ¢ atoms but if an atom joins
a cluster of i 4+ 1 atoms the energy of the system is also reduced.®

Nucleation and growth of films has been studied extensively both experimentally
and theoretically. Theoretically the problem of nucleation on a substrate is simpler than the
nucleation of a solid from a melt. In this case, since atoms can only occupy fixed positions
on the substrate surface one need not worry about Lothe-Pound [50] corrections, and issues
of heterogeneous versus homogeneous nucleation are meaningless. Besides the obvious tech-
nological relevance of studying film nucleation, it has gained further importance because
of advances in atomic-resolution surface characterisation techniques (such as STM), and
numerical “experimentation” methods. These methods allow direct comparison between
the rate equation descriptions of aggregation and real or numerical experiments. Together

these tools have lead to a good understanding of the early stages of film growth.

3.4.1.1 Rate equations

Nucleation and growth of critical clusters of atoms during the precoalescent stages
of film deposition is just one of a variety of aggregation phenomena that includes colloid
formation, blood clotting, aerosol formation, gelation, and polymerisation. The first the-
oretical description of these general class of phenomena was given by von Smoluchowski

in 1916 [51], who described the temporal evolution of an aggregating system with a set of

"These correspond to layer by layer growth, three dimensional island growth, and layer by layer growth
followed by islanding.
8This assumes all clusters are the same shape, and strain is unimportant.
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coupled rate equations. In this set of equations the rate of change in the population of each
sized aggregate is dependent on the populations of aggregates of other sizes. The equa-
tions can be made as complicated or as simple as required to account for the interactions
occurring in the system in question.

Irreversible nucleation and growth of films—where the critical cluster size i is 1-can
be represented by one of the simplest, non-trivial, manifestations of von Smoluchowski’s rate
equations. During irreversible growth it is assumed that atoms are continually deposited
on the substrate with a flux, F'. The deposited atoms do not desorb. Only free monomers
(whose mean number density is defined as (n;)) are deemed to be mobile. In the case of
isotropic diffusion the rate of change in the mean density of clusters of size s is given by

L) P (pacs (e ~ 9o (1) ) + D (a0t o) () — 0 ) (n) ), (37
where (n;) is the mean number density of clusters of s atoms averaged over the whole
substrate. In Eqn. 3.7 the first two terms account for the addition and subtraction of
island of size s due to the direct impingement of atoms from the vapour with islands of size
s — 1 and s respectively. The coefficient p; is the direct capture cross section of a island of
size s to vapour atoms. How p, varies with s depends on the geometry of the island.’ The
second two terms account for the growth of islands by aggregation of monomers, and so
must be dependent on the mean density of monomers and the diffusion coefficient, D. The
set of dimensionless coefficients, o, are the “capture numbers” which denote the ability of
an island of size s to capture diffusing monomers.

The rate of change of the average monomers density is a little more complicated

and is given by

d<dT;1>:F 1—2p1 (n1) = ) ps(ns) | — | 200 (1) + ) o (ng) (na) | - (3.8)

§>2 §>2

Here the terms in the first parentheses account for direct flux of adatoms from the vapour.
The terms in the second parentheses are the loss of monomers on the surface by either
aggregation to existing islands or nucleation of a new island by the collision of two monomers.

The detailed physics of a particular aggregation phenomena lie in the innocu-
ous looking capture numbers. Venables [52], and Bales and Chrzan [2] developed a self-

consistent method for calculating the capture numbers for the case of layer by layer growth

9Whether islands are two dimensional or three dimensional, and whether they are fractal, dendritic, or
compact.
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where the islands remain two dimensional as they grow. In this case the rate equations
can be made dimensionless by considering the rates of change of population densities with
respect to the area of the substrate that had been covered. Bales and Chrzan found the
rate of capture of monomers by solving, self-consistently, the diffusion equation for the local
density of monomers in a mean field of monomer sinks (islands) and sources (the flux).

A simplified rate equation approach was originally solved self consistently by Ven-
ables [53] who lumped the populations of all supercritical islands together into a single
population density (n,).

Evans and Bartelt [54] have integrated the same reduced set of rate equations
analytically by assuming asymptotic forms for the capture numbers based on the number
of unique sites visited by a random walker and assuming the islands to be points. These
researchers have in the same way integrated these equations for the case of purely one
dimensional diffusion on a two dimensional substrate.

Once islands have been nucleated they act as sinks depleting the monomer con-
centration around them. Since the probability of nucleating an island goes as the square of
the monomer density, further nucleation events are not distributed uniformly on the sub-
strate but are more likely in the spaces between islands where the monomer concentration
is highest. This has been elegantly demonstrated using level set simulations by Ratsch and
coworkers [55]. The rate equation description of island growth is a mean field approxima-
tion, and hence does not capture the correlation effects of nucleation. So, while the rate
equation formulation captures the evolution of the total number density of islands and some
of the scaling phenomena, it fails to predict the distribution of island sizes.

Recently Popescu, Amar, and Family [56, 57, 58] have developed a mean field
rate equation description that does predict the observed island size distribution. Popescu
and coworkers consider the depleted regions (or Voronoi cells!?) around the islands. They
assume that the population of islands of size s resides in a distribution of differently sized
Voronoi cells. Then, they not only consider the evolution of the island populations but also
the evolution of the distribution of sizes of cells that they occupy. They effectively make
the capture numbers, o,, depend on the whole distribution of island separations, and then

solve for them self-consistently.

'The Voronoi cell of an island is the locus of points closer to that island than any other. This is the
polygon who’s edges are the perpendicular bisectors of the inter-island vectors.



35

3.4.1.2 Numerical simulation

The aim of simulating film growth is neither to predict quantitatively the out-
come of a particular set of growth parameters, nor to replicate all the complexities of film
growth. Rather, simulation is a tool that allows insight to be gained by constructing simple
models that display experimentally observed phenomena. It is a direct way of finding the
consequences of a hypothetical set of interactions. At the same time one must be wary that
simulations are not a palimpsest, that is not devised or revised, so as to give the desired
result without consideration of other interactions that could either also give the same be-
haviour, or destroy it. Building a useful KMC model requires striking a balance between
encompassing enough complexity so that its behaviour is not obvious a piori, whilst not
making the simulation so complicated that physical insight is obscured.

As nucleation and growth is an inherently stochastic process occurring far from
equilibrium the kinetic Monte Carlo (KMC) algorithm is the most commonly used method
for simulating it. A KMC simulation follows the individual jumps of a collection of atoms on
a substrate. All possible “events” (in this case atomic jumps) are enumerated and assigned
a rate R;. At each iteration of the algorithm the possible events are weighted by their
relative rates, R; = %, then one is selected at random and made to occur. After each
step the rates are reevaluated and the elapsed time is advanced with the stochastic interval
At = ﬁ In (%), where ( is a positive random fraction. This time step gives a Poisson
distribution of intervals between events with an expectation value of (At) = ﬁ The
physics of the system being simulated is contained in the “events” that are allowed to occur
and the rates that are assigned to them.

The rate with which an adatom performs various jumps depends on its local en-
vironment, that is, the local strain, and the number and configuration of the nearest and
next nearest neighbours. KMC simulations generally assign rates of hopping by one of two
schemes. The first is a bond counting scheme in which the energy barrier for the ith event,
E;, is assumed be some function of the number of neighbours before and after the event.
A uniform “attempt frequency”, w, is assumed and the rate of the ith event is given by

—EiB with B the reciprocal thermal energy. Detailed

the Boltzmann distribution R; = we
balance'! is obeyed by simply ensuring that the difference in the energy barrier between

the forward and reverse processes is the same as the difference in energy between the initial

UDetailed balance is the requirement that there be no closed cycle of events which changes the total
energy of the system; to do so would violate the first law of thermodynamics.
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and final configurations. The advantage of this scheme is that it is easy to implement.
However, the validity of the bond counting argument is suspect, especially for atoms hop-
ping at island edges. A second scheme is to generate a lookup table of allowed events and
their rates (or energy barriers) for different configurations of adatoms. The rates or energy
barriers or processes with different atomic configurations can be calculated (or measured)
separately using ab initio techniques or empirical methods. Alternatively simulations can
be performed as phenomenological numerical experiments in which rates are assigned to a
lookup table of events with no detailed physical justification, the aim being to see what
would be the consequence of such a scenario. The KMC experiments documented in this
thesis fall into this last category.

Almost every theoretical or experimental work on the nucleation and growth of
islands is accompanied by some form of KMC simulation. Bales and Chrzan [2], Family
et al. [56, 59], and Evans and Bartelt [54] all compare predictions of their rate equation
analysis to simple KMC simulations, while Kern et al. [9], and Linderoth et al. [49] all
compare STM studies to idealised KMC simulations.

Romanov and Speck [5], Sabiryanov et al. [7], Larsson et al. [6, 8] have performed
KMC simulations of the growth and ordering of islands on (111) and (001) FCC surfaces
that are periodically strained by misfit dislocates. This body of work sets out to determine
the optimum growth parameters to obtain nanoscale patterning and, like all good KMC
studies, they oversimplify the processes involved. In particular they only consider the trace
of the strain tensor as the important parameter.

Islands of adatoms grown epitaxially will impart a strain (which decays as ~ r~3)
in the substrate upon which they reside (even homoepitaxial islands). Thus, a complete
simulation of island growth would incorporate the strain on the substrate, updating the
strain field every time an atom moves and then recalculating the hopping rate for every
atom based on the new strain. This procedure becomes exorbitantly costly in computer
time for any practical simulation and so most researchers (including this researcher) ignore

this effect.!? Miiller-Krumbhaar et al. [60] have overcome this problem by only considering

12This problem illustrates one of the two major problems that thwart KMC simulations. The first is where
calculating and updating many different rates at each time step becomes too costly and simulations can only
be performed over small time scales. A second problem arises if there are many processes occuring with a
fast rate that do little to change the state of the system. Here the number of iterations it takes between
important events makes the simulation slow. The island growth simulations discussed later are self healing
in this regard, that is that the rapid processes of atoms hopping on the surface are gradually frozen out, the
mean time step increases, and a new adatom is deposited.
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the strain from individual islands locally, and approximating the strains at longer ranges
by considering the combined strain from all the islands in each box of a coarse grid.
Numerical simulation of island growth is not conducted exclusively by the KMC
method. Ratsch et al. [61] have simulated island growth using the “level set method”
(LSM). Here the boundaries of each layer of atoms in an island are represented by contours
(the level set) in a function which is continuous over the entire substrate. The advantage of
this is that the progress of individual atoms is no longer tracked, one instead considers the
evolution of a continuous monomer density. The behaviour of the system can be altered in
an ad hoc manner. In this way Ratsch and coworkers have used the LSM to demonstrate
that the distribution of island sizes arises as a result of statistical noise in the nucleation
processes (and its sensitivity to the monomer concentration), rather than fluctuations in

the growth of islands [55].

3.4.1.3 Scaling

Isotropic island growth exhibits two scaling characteristics. Villain et al. [62]

proposed that the mean density of stable islands scales with the ratio of flux to the diffusion

(ny) ~ (%) - (3.9)

The scaling exponent, Y, is found to vary from i to % For the case where the critical

coefficient, that is

cluster size, i = 1, Evans and Bartelt [54] find that x = 3 and } for isotropic and infinitely
anisotropic (one dimensional) diffusion respectively. Whilst when ¢ = 2 they find x = %
and % Implicit in these calculations is the idea that the density of stable islands depends
on the rate of nucleation of islands alone (islands cannot move). Further it implies that
for a given class of growth (i = 1, i = 2, etc.) the nucleation rate evolves with 6 in some
universal way which scales with the quotient (%)_X. This scaling form is significant as the
island density can be easily measured and so this gives a straightforward way of measuring
an isotropic surface diffusion coefficient [63].

A second scaling behaviour is manifest in the distribution of sizes of islands. This
scaling exhibits two aspects, the first of these is trivial and arises because there is only one
length scale in the problem, namely (%)%, which acts to set the average island size. The
scaling can be clearly understood by realising that the positions of nucleating islands on a

surface is not completely random. Consider an initially bare substrate upon which an initial
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Figure 3.6: Schematic view of the time evolution of adatom islands during the early stages of film
growth. Box (a) shows initial random nuclei, (b) and (c¢) show the time evolution with existing
islands growing an the substrate being continually divided into smaller portions as new clusters
form in the empty regions between existing islands.

few embryonic clusters form at random, this is shown systematically in box (a) of figure 3.6
in which there are empty regions connected by small islands. More atoms are deposited,
the later atoms that land near existing islands are more likely to collide with these clusters,
while atoms which have a long way to diffuse to existing clusters are more likely to collide
with other adatoms and nucleate new clusters. Nucleation is most likely in the middle of the
empty regions and so the surface subdivides into smaller empty regions (panel (b) and (c)
of figure 3.6). As the process repeats a pattern is created in which the original length scale
was set by F%I (where b is the nearest neighbour atomic distance). Thus micrographs of
islands grown to the same overall coverage but with different deposition rates can be made
to look the same by simply changing the magnification (providing the average island size is
large enough that the size of individual adatoms is negligible). The scale factor required to
make micrographs look the same is set by the mean island size.

More formally the average island size is defined to be

5(6) => sP(s,0). (3.10)

s>1

Here P(s,0) is defined to be the probability that any atom, picked at random, resides in a

cluster of s atoms,

8 <ns>
P(s,0) = 72522 ()’ (3.11)

It is observed (in physical and numerical experiments) that the island size distribution obeys

P(s,0) =5 '(0)g (;—9)) , (3.12)
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where g(z) is a universal function that depends on the critical cluster size 7. The distribution,
g(z), is narrower for larger critical island sizes, because the nucleation probability of a new
island becomes more sensitive to the local monomer density [55].

The subdivision of the surface by nucleation does not continue ad infinitem.
Rather, as the spaces between islands become smaller the incorporation of monomers at
island edges becomes more likely than nucleation. A second, more fundamental (and sur-
prising), aspect of the island size distribution is that the scaling form in 3.12 is obeyed
for any coverage in the precoalescent regime. This means that the shape of the scaling
function, g(z), is maintained during growth even though nucleation slows down and islands
continue to grow. Here micrographs of a deposition surface at different times cannot be
made to look similar by changing their magnification as they have different area coverages.
The scaling of island archipelagoes grown to the same coverage with differing % is trivial,
and simply arises from the way islands nucleate. The scaling of the island size distribution
at different coverages, on the other hand, is deeper and arises from the way the evolution

of nucleation over time is related to the growth of islands over time.'

3.4.2 Rate equations for anisotropic diffusion

The self-consistent rate equation description of irreversible two dimensional island
growth is now modified to incorporate anisotropic diffusion. The rate equations 3.7 and 3.8
are rewritten in dimensionless form bt defining 6 to be the fraction of substrate covered and
setting the area of one lattice site to unity gives F' = %. The product Do is replaced by

an unknown function of the anisotropic surface diffusion tensor Hy(D).

Al S, () (3.13)

0 2
— {2t + 2P 2 1 5 gy 2P
§>2
d%) _ (psl(ns1)+(n31)(n1)H —;(D)) (3.14)

= (et 4 () o) PP

N——

'3 The origin of this scaling is not well understood.
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It is assumed that the kinetics of adatom attachment at island edges are considerably more
rapid than the arrival of atoms at the island edges. Following Bales and Chrzan, the rate
of monomer capture by an island of size s is found by considering the flux of monomers to
an island edge. The distribution of monomers around an island is estimated by solving the

diffusion equation,
onq(r,0)

00

Here the first term is the diffusive change in the local monomer density, and the second

- V.%.an(rﬁ) +T-S. (3.15)

term is a distributed source accounting for the continued deposition of monomers from the
vapour,

J=1- Zps <ns> . (3'16)

s>1
The final term in the diffusion equation is a sink term to account for the continuous loss of
monomers to islands (and other monomers and impinging vapour atoms). This is approxi-
mated by calculating the mean effective sink strength off all the islands and distributing it
uniformly over the entire substrate,

H,(D)
F

s=p () 42752 ) + 3 () TP e @)

§>2
This is equivalent to calculating a mean density of sinks of unit strength, which is related
to a characteristic sink separation &.

If the diffusion tensor, D, only contains diagonal terms (which can certainly be
accomplished by rotating the coordinate system providing the deformed lattice remains
orthorhombic), the diffusive term on the right hand side of Eqn. 3.15 is
Dy 8%n1(r, 0) n Dy, 8*n4(r,0)

F 0x? F oy?
where Dy, and D,, are the diagonal elements of the diffusion tensor. This expression is

rewritten in a new coordinate system parameterised by r and ¢ where z = ,/DD—“;”T cos(¢),

and y = \/DD—%"T sin(¢), to givel

D
V.f.an(r,H) = . (3.18)

ny 2 2 ony
V.D.Vny(r,0) = 52 (Dmr,w + Dyyr,y) + B (Dyar g+ DyyT yy) (3.19)
onq ony
+2m (D3z,aTz + Dyydyry) + ¢ (Dozbzz + Dyyd,yy)
on?
+8ﬁ¢5; (waqﬁ?x + Dyyd’?y) .

'y is a scalar and not the position vector 7.
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Here D, has the dimensions of a diffusion coefficient [L?T~] but is as yet undefined. The
terms of the form o g and « g, are the first and second partial differentials g—g and %5‘7.
The new coordinate system stretches the  and y directions relative to the speed of diffusion
in those directions so that the right hand side of Eqn. 3.19 simplifies to the Laplacian in

cylindrical coordinates,

(3.20)

2 2
V.D.Vny(r,0) = D, (3 ny 10n; 10 nl) .

or? r or  r?2 0¢?
If D, is chosen to be /Dy;Dy, the area of the substrate remains the same in the new
coordinate system and the dispersed sink density remains unchanged. This is equivalent to

1

stretching the = axis by a factor A and the y direction by a factor %, where )\ = (g—zz) ‘)
The partial differential equation in 3.15 can be reduced to an ordinary differential equation
by comparing the rate of change of the local density of monomers with the mean density of
monomers,

F d<n1> 8’)11 62’)’L1 1 8%1 1 82711 ny — <’rL1>
— - ) ==t S — 1) ~o0. 21
D, ( 0 ae) ( o Trar Trag ) T\ T e 0. (32)

The approximation to zero is justified when % is sufficiently large (compared to the square
of the atomic area) so the term on the left hand side can be neglected (the adiabatic approx-
imation). This assumes that the shape of the monomer distribution changes very slowly
and only the amplitude of the distribution changes significantly with the mean concentra-
tion. This approximation removes the time dependence from the problem and yields the

Helmholtz equation,

2 2

(7ot ) (no0)
in which the variables r and ¢ can be separated. The Helmholtz equation can be solved for
the boundary conditions that the monomer density reaches the mean field value infinitely
far from the island and the monomer density is zero at the island edge. The simplest solu-
tion occurs when the perimeter of an island of size s (or its containment area if it is fractal)
lies on a constant value of r = r; in the diffusion weighted cylindrical coordinate system.
This implies the islands are elliptical with an aspect ratio of A2. This will be the case if
perturbations at the island edge can relax with sufficient speed to prevent a growth insta-
bility in the island shape but without relaxing so fast that the island becomes circular. A

stronger argument can be in which the detailed shape of the island is unimportant provided
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that the monomer depletion field around the growing island is roughly elliptical with an
aspect ratio A2. This will be the case if the island does not exhibit a growth instability
(i.e., growing in a needle shape in the direction of slowest diffusion!®). When the deviation
of the island from circular matches the stretching of the coordinate system the angular
dependence of the concentration disappears, and the Helmholtz equation reduces to that
of Bales and Chrzan. Thus solving for ni(r,8) subject to the conditions that ni(rs,0) =0
and ni(r — 00,0) = (n1(0)) yields

Ko(r/¢) )
n1(r,0) = (n1(0 (1—7 , 3.23
r.0) = (m () (1~ 2578 (3.23)
Where K;(z) is a modified Bessel function of order j. The capture coefficients can now be
found by equating the rate of monomer capture with the flux perpendicular to the island

perimeter,

(n1(6)) H,(D) = 7? (D.Vny (T, 0)) H(T)dI(T), (3.24)

where T is the tracking vector of the perimeter of the island, and p(T'), and dI(T') are the
outward unit vector perpendicular to the island edge, and the elemental perimeter length
at T', respectively.!® Parameterising the edge of the island with the angle ¢ in the stretched

cylindrical coordinates gives

p(l) = Ardy,dr} (3.25)

Vdz? + dy?’
di(T) = +/dz?+dy?, (3.26)

D.Vn(T,0) = {Dgz(n rz+mng¢bz),Dyy(n,ery+nedy)}- (3.27)

Substituting these into 3.24 gives the integral

dg. (3.28)

T=Tg

27 o
(m(6)) H(D) = DeaDy [, 52
¢=0 "

This leaves the capture coefficient proportional to the geometric mean of the diagonal

elements of the diffusion tensor

rs ( Ki(r/) )
Hy (D) =2n/Dy;Dyy— | —< . 3.29
(D) D't (e (5:29)
This, at first sight, is not surprising as an island on a substrate with anisotropic diffusion

depletes the monomers from the same area of substrate in a given time as an island on an

5In this instability there is no depleted region ahead of the island in the extended direction, rather
monomers move to the fast moving fronts laterally along the direction of fast diffusion.
Y6 This is a vector and must not be confused with the scalar gradient energy coefficient T'.
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isotropic surface with diffusion coefficient /Dy, Dy,. This result predicts that the geomet-
ric mean of the diffusion tensor is the only important parameter in the evolution of the
density of stable islands, (n,), with 6. It must be noted that the mean field approximation
fails to capture the island size distribution, and thus the treatment outlined above gives
no information about whether the universal function g(s/3(6)) in Eqn. 3.12 is lost with
anisotropy.

In fact, as is demonstrated in the next section, the result found above is only
accurate for relatively small diffusion anisotropies. Moreover, the erroneous predictions of
this model at large anisotropies hints at a more general failing of macroscopic diffusion

descriptions of island growth.

3.4.3 KMC simulations

A KMC code has been written to simulate two dimensional irreversible island
growth on a square lattice. The purpose of this code is to investigate the consequences of
the crowdion diffusion mechanism hypothesised above and to see if it exhibits behaviour
that can be distinguished from diffusion by simple hopping (or kickout) in a real experiment.
For this reason the number of allowed process are kept to the minimum that will give the

crowdion diffusion behaviour.

3.4.3.1 Rates and processes

The dynamics are limited to include only six possible hopping processes, the rates
of which are defined in a lookup table. The first three processes are accessible to isolated
monomers (atoms with no first nearest neighbours). These are are simple hopping in the
[110] and [110] directions (defined to be the z and y directions respectively with rates R,
and Ry), and the formation of a crowdion (with rate R.). The movement of a crowdion is
assumed to be more rapid than the total rate at which any event occurs on the substrate.
Thus the rate of crowdion transport is limited by the rate of crowdion formation alone and
the jump (as with all the other permitted processes) is assumed to be instantaneous. Hence
there are no crowdion-crowdion interactions. A crowdion is restricted to travelling in the +z
direction and only along one of the two atomic rows the adatom is initially sitting between
(see figure 3.7). A crowdion jumps d,. lattice spacings before ejecting the atom at its centre

to one of the two rows of surface sites to either side of it. Should the crowdion encounter
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Figure 3.7: Schematic showing the positions of atoms before and after a typical crowdion hop.
Unhatched circles represent atoms that move.

any atoms in either of these two rows before travelling d. the crowdion decomposes, and
the ejected atom binds to the surface atom. As calculating the phonon drag of a crowdion
is nontrivial d. is left as a controllable parameter.

There is theoretical evidence to suggest that vacancies in the Cu (001) surface are
as mobile as adatoms [64, 65]. As monomers are continually being deposited on the surface
during growth is it assumed that the population of monomers is larger that the population
of vacancies, thus diffusion by vacancies is ignored.

Two further processes are included in the code that allow islands to move and
their shapes to relax. These are hopping along the edge of an island (with rate R.) and
hopping away from a reentrant corner in the island perimeter (with rate Rg), which are
shown schematically in figure 3.8. Both of these are independent of the orientation of the
island edge, and both include hopping around convex corners in the island edge. In general,
atoms with one nearest neighbour can hop clockwise or anticlockwise around an island with
rate R, atoms with two adjacent nearest neighbours and a next nearest neighbour between
them can hop clockwise or anticlockwise with rate Ry, and all other atoms in islands are

immobile. The requirement that a step hopping atom have a next nearest neighbour is
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and (c) are examples of hopping along an island edge that

)

)

b

(

)

)

a

(

occurs with rate R.. Figure (d) and (e) are examples of hopping away from a reentrant step and
happen at rate R,. Panels (f) and (g) show configurations in which the unhatched atom is immobile,

in figure (f) the atom must be made immobile in order to not violate detailed balance.

\\\R\\\N\\\»\\\\

\\\\ \\\\ \\\\

Figure 3.8: Figures showing examples of atom motion at an island edged. The circles represent
adatoms on the (001) surface (the substrate atoms are not shown). The mobility of the unhatched

atom is considered. Figures
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necessary to obey detailed balance. R; is set to be smaller than R,, as the hopping atom is
initially more highly coordinated for step hopping than edge hopping.

The final ingredient in the KMC code is adatom deposition. Here one site is picked
at random to receive a new adatom. Should the picked site lie under an existing island a
new site is picked at random from the set of empty sites closest to the original site. This
is justified in conditions of two dimensional growth where adatoms that are deposited on
top of existing islands diffuse to the island perimeter and are incorporated into the growing

island edge.

3.4.3.2 Detailed balance

Detailed balance is the requirement that there be no possible closed sequence of
events that changes the total energy of the system. The rates for the three monomer
processes are the same everywhere on the bare substrate, and are the same forward and
backward, and thus satisfy detailed balance on the substrate as the energy of the system is
not changed by the translation of a monomer.

A monomer bonding with another adatom does change the system’s energy but
forbidding atoms from desorbing from islands removes any closed trajectories of the system
which contain this energy change.!” The mobility of the unshaded atom in configuration (f)
figure 3.8 must be zero in order to prevent the desorption of adatoms from islands. It now
remains to ensure detailed balance is obeyed by the relaxation processes at the island edge.
As both edge hopping and step hopping are independent of the orientation of the island
edge, and as both are the same clockwise and anticlockwise detailed balance is obeyed at

the island edges and thus the complete model is thermodynamically sound.

17This also implies that the energy required to remove an atom from an island edge to the bare substrate
is infinite (and this energy must be dissipated over the whole system), just as the energy required to remove
a monomer from the otherwise bare substrate to the vapor is infinite. This is a little strange but does not
violate the laws of thermodynamics.
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3.4.3.3 Diffusion tensor

From these simple island relaxations and equation 3.5 it is trivial to calculate the

macroscopic diffusion tensors,

2 R, + d&*R 0
D, = b—x (Ba + dZR) , (3.30)
2 0 (Ry + %)
2 10
D, = bRex , (3.31)
4 0 1
D. - 51)21!26>< 10 (3:32)
5 27 011 )

Here D1, D5, and D3 are the diffusion tensors for monomers, dimers, and trimers respec-
tively, b is lattice parameter of the primitive square surface lattice (i.e., b = v/2a where a
is the lattice parameter of the FCC lattice), and d, is the mean squared number of lattice
spacings jumped by a crowdion. For the diffusion of trimers one must account for the mo-
tion of both “L” shaped trimers and linear trimers. Two of the jump processes of an “L”
shaped trimer result in another “L.” configuration and two result in a linear configuration,
whilst each of the four possible jumps of a linear trimer result in an “L” configuration. Thus
on average the population of “L” shaped trimers must be double that of linear trimers. The
result in equation 3.32 above averages over the possible trimer configurations weighted by
their relative abundance.

Several things are evident from the diffusion tensors above. First, there are an
infinite number of combinations of R, Ry, R. and d. that will give the same monomer
diffusion coefficient. Secondly, the rate of diffusion of dimers and trimers only depends on
the rate of edge running, R.. The diffusion of four atom clusters is more complicated; at
some point a diffusing tetramer will adopt a square configuration which it can only get out
of by an atom jumping away from a reentrant step. If Ry < R, four atom clusters are
effectively immobile.'® In fact if R; = 0 the centre of mass of a growing island can oscillate
but the interior of the island will always contain the four atoms that first formed a square
(in their original positions).

It would appear that if R, is sufficiently small in comparison with R, and R, then

the mobility of dimers and trimers may be neglected and a comparison can be made with

"8 Three is the first “magic number” of a square lattice.
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Figure 3.9: Scaled plots of (n1) and (n,) versus @ for fractal (a) and compact(b) islands. In both

DZZD . . . . .
cases Y—p— = 107b*, solid lines are calculated from the self-consistent rate equation analysis,

and symbols are the results of KMC simulations with anisotropy ratios: A = 1 (o), A = v/2 (o),
A =2 (0), and in plot (b) A =4 (»).

the simplest of von Smoluchowski’s rate equations. This, however, is not always the case
and it is demonstrated below that the distribution of the island sizes, P(s,0), is rather

sensitive to the rate of edge diffusion for rather simple, but subtle, reasons.

3.4.3.4 Isotropic hopping

Testing The KMC code was tested by comparing the evolution of (n{) and (n,) with 6
for isotropic diffusion with the predictions from numerically integrated rate equations. The
agreement can be seen in figure 3.9 (circles and the solid lines). Plot (a) shows calculations
for fractal islands where no atom mobility is permitted at island edges. Here p, ~ s2/9f,
and rg ~ ﬁs#, where d; is the fractal dimension. The fractal dimension gives a measure
of how the continuous area required to envelope a fractal scales with the area of the fractal
itself and can be found by measuring how the “radius of gyration”, defined to be 7y, of

islands scales with the number of atoms in them. The radius of gyration is defined by [66]

(3.33)
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Figure 3.10: Plots of scaled island size distribution (3P(s, ) vs. (s/5)) under diffusion by isotropic
simple hopping. Plot (a) is for fractal islands grown to conditions: 2 = 10°* and § = 0.2 (O),

D =10%" and 6 = 0.2 (), Z =107p* and 6 = 0.2 (>), £ = 107b* and § = 0.1 (). Plot (b) is

for compact islands grown to coverage § = 0.2 with R, = %, R, = W, and mobility to flux
ratios of: % =10%* (O), % = 10%p* (0), % =107b* ().

where r; is the displacement vector of the ¢th atom in the fractal from the fractal’s centre
(of mass), and the sum is performed over all s atoms in the island. The fractal dimension
was calculated from maps of islands at 5 and 10% coverages and found to be 1.7 £+ 0.1.

Plot (b) of figure 3.9 show calculations for compact islands where the relaxation
of island shapes is included. Here dy = 2, ps ~ s, and 75, = a+/s, with the fitting parameter
a = 0.95 for square islands following Bales and Chrzan [2].

All simulations presented here were performed on a 500 atom by 500 atom sub-
strate with periodic boundary conditions. All statistical data from KMC simulations is

averaged over 80 simulations.

Island size distribution Figure 3.10 shows scaled plots of P(s,8). For fractal islands
(plot (a)) the data collapse is excellent for values of 727 varying over three orders of mag-
nitude, and coverages ranging from 0.1 to 0.2. The same is not true when the islands
are compact (plot (b)) where the distributions become narrower and more peaked with
increasing %. This is attributed to the mobility of trimers and dimers that edge running

affords.
The origin of the breakdown in scaling is illustrated by figure 3.11 that shows
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Figure 3.11: Plots of unscaled (a) and scaled (b) island size distribution under diffusion by isotropic
simple hopping. Islands were grown to 8 = 0.2 under conditions % = 107b* with edge relaxation
rates: R, = 0 and R; = 0 (o), R, = ﬁ and R; = W (0), R, = ﬁ and R; = 0 (O),
R. = ;25 and R, = 0 (>). In plot (b) splines have been fit through the points for the fastest edge
relaxation, and no edge relaxation to make the change in shape of the scaling function easier to
discern.

unscaled (a) and scaled (b) size distributions of islands grown isotropically with simple
hopping and different degrees of edge mobility. Typical archipelago maps for the plots in
figure 3.11 are shown in figure 3.12. It can be seen from these figures that as the rate
of hopping at island edges increases islands transition from having a fjordal coast line, to
being compact and roundish, then compact and facetted. As edge running increases the
total density of islands is reduced and the distribution of islands becomes narrower. These
results are in agreement with the observations of Ratsch and coworkers [67]. Allowing dimers
and trimers to move, albeit slowly, means that some of these clusters are able to diffuse
to (and meld with) other existing islands before they have time to be rendered immobile
by agglomeration of other monomers. Hence, there is a small but continuous drain on the
number of stable clusters nucleated, which acts to reduce both the total number of islands
and the fraction of small islands.

Mobility of small clusters has another effect that relates to the nucleation proba-
bility. It was stated in section 3.4.1.3 that nucleation is most probable in the regions where
£,19

the concentration of monomers is larges similarly a small mobile cluster is most likely

%This is an average over time not the area of the substrate.
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Figure 3.12: Micrographs of island archipelagoes from the KMC simulation. All images are 500b x
5000b. Black indicates bare substrate while adatoms are shaded from grey to white based on the time
they were deposited on the substrate, with white atoms deposited latest. Map (a) shows fractal
islands with no relaxations at island edges (Re = Rs; = 0). Chart (b) shows rounded compact
islands for which R, = ﬁ,Rs = 0. Maps (c) and (d) shows larger square compact islands for

which R, = #, R = 0, respectively
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Figure 3.13: Micrographs of islands at § = 0.1 grown with % = 107 with: A = 2 and no edge
mobility (a), and A = 4 with island shapes able to relax (b). Images dimensions are 500b x 5000.
Diffusion is fastest in the horizontal direction.

to engage another adatom in these regions. Thus, with dimers created near existing is-
lands being “swallowed” by the islands, and dimers distant from island becoming immobile,
the effective nucleation of immobile islands is more sensitive to the local concentration of
monomers than the nucleation of dimers is (i.e., n1(r)?): the effective critical island size

has been increased.

3.4.3.5 Anisotropic hopping

Number density of stable islands The anisotropy of diffusion is characterised by the
parameter A = (ID)—ZE) Z, and the magnitude of the diffusion coefficient is defined by the
geometric mean D, = \/DyzDyy. Plots of (n,) versus 6 are shown in (a) and (b) of figure
3.9 for simple hopping with varying degrees of anisotropy. From these plots two things
are apparent. First increasing anisotropy reduces the density of stable islands, and second,
islands begin to coalesce at lower coverages.

It can be seen from figure 3.9 that the number density of islands decreases more

quickly with diffusion anisotropy for the case of fractal islands than compact islands. The

cause is evident in the snapshot of the island archipelago for each case (figure 3.13). The
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fractal islands show a growth instability. These islands are elongated in the direction of
slow diffusion. As there is no mobility of atoms at the island edge a perturbation in the
island shape can only heal if the perturbation reduces the outward velocity of the growing
island’s perimeter. An asperity at the island periphery protruding in the slow direction of
diffusion can grow rapidly by depleting the monomers from the regions of substrate laterally
(in the fast direction) on either side of it. Thus the islands in map (a) of figure 3.13 extend
in the slow direction creating depleted regions along the long edges but with very little
depletion ahead of their fast growing tips. Clearly this violates the assumption made in the
rate equations analysis in section 3.4.2 that the islands (or at least their depleted regions)
have an aspect ratio of A2, and so one should not expect fractal islands simulations to agree
with the mean field theory.

From chart (b) of figure 3.13 it can be seen that the islands for the shape relaxing

calculation remain roughly circular, even with a diffusion anisotropy of g:z = 256, as
required by the rate equation analysis. Figure 3.9 shows, however, that even compact
islands do not adhere to the mean field predictions (particularly evident in the monomer
density for A = 4). This indicates that the prediction from section 3.4.2 that the geometric
mean of the diffusion tensor is the only relevant parameter in the number density of stable
islands is flawed.

The systematic deviation in (n1), and (n,) from the isotropic case with increasing
A in figure 3.9 (a) can be understood by considering the number of unique sites visited by
a random walker on a square lattice. If the walker steps north, south, east or west with
equal probability?? then the expected number of unique lattice sites that the walker visits,
defined to be (IV,), after taking N steps asymptotes to [43]

TN

(Ny) ~ V)’ (3.34)

and for a one dimensional walk this is

(Nu) ~ (ﬂ)é : (3.35)

™

These two cases are the extreme lines in plot (a) of figure 3.14. The random walk on a two
dimensional lattice is completely space filling-that is, given an infinite number of steps a

walker is certain to return to its starting point.?! As the walk becomes anisotropic, however,

20This is a Pléya walk in two dimensions.
2This is not the case for random walks on homogeneous lattices with dimensions larger that two [43].
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Figure 3.14: Plot of the number of unique sites visited by an isolated random walker hopping N
times.

the efficiency with which the random walker searches space is reduced, and the fraction of

{ ]\}‘> diminishes until the extreme case gives one dimensional diffusion.

For diffusion with a constant /D, Dy, however, the number of hops performed

unique sites visited,

in a given time increases with A (N ~ Dy + Dy, ). The result, as shown in plot (b) of figure
3.14, is that diffusing monomers sample more of the surface lattice in a given time when
the diffusion is anisotropic.?? Clearly this must be important for the early time nucleation
of islands when there is only a gas of monomers on the surface. At these times the notion
of depleted regions is not applicable and nucleation depends on the time it takes monomers
to search an area for other monomers, rather than the time it takes a monomer to travel
a given distance (across a depleted region) to an existing island. The nucleation search
area, (nl—1>, decreases as more monomers are deposited on the surface. Thus a slow searching
species will nucleate later, and with a higher density of islands, than a fast searching species.
This behaviour can clearly be seen in figure 3.9. Once islands have been established and
act as sinks for monomers then the distance an adatom has to travel to an island becomes
important.

It must be noted that the diffusion coefficient only gives information on the dis-

tances that atoms move in a given time, not the area they search. Hence, rate equation

220bviously this enhancement of the search area with diffusion anisotropy is also occurring for fractal
islands.

2500
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formulations that rely only on macroscopic diffusion (such as that in section 3.4.2 along with
that of Bales and Chrzan [2], and Family et al. [68]) overlook some of the physics of the
problem (and hence the good agreement between these theories and numerical experiments

must be, at least to some small extent, fortuitous).

Coalescence The KMC simulations exhibit coalescence at lower and lower coverages as
diffusion becomes more anisotropic.?

Coalescence of islands on isotropic substrates is delayed because as two neighbour-
ing islands approach each other the depletion regions around them overlap and the accretion
of monomers in the overlap region is reduced. This slows the growth velocity of the sections
of island perimeter that are heading toward collision. The islands screen each other from
the sea of monomers as they approach each other. In the case of anisotropic diffusion the
depleted regions are highly anisotropic.?* Thus, the screening in the slow diffusing direction
is greatly reduced and coalescence can occur earlier in this direction. It can be clearly seen
that in both micrographs in figure 3.13 that the separation between islands is greater in the

direction of fast diffusion (the z direction) than in the slow direction.

Island size distribution The shape and scaling behaviour of the island size distribution
with hopping anisotropy is examined in figure 3.15. Panel (a) shows scaled plots of P(s, )
for fractal islands at a coverage of @ = 5%.25 Panel (b) shows the same plots for compact
islands. The distributions in both cases are slightly different due to edge running. Remark-
ably there are no gross deviations in the scaling functions (discernible from the noise) due

to anisotropy.

3.4.3.6 Crowdion diffusion

Adatom trajectory and site visitation The diffusion tensor for the hypothesised crow-
dion diffusion, 3.30, may be simplified by assuming that R, is of the order of R,. Thus
defining R, ~ R, = Rj makes the diffusion tensor the sum of an isotropic hopping diffu-

. 2R 10 . . . . b2R, 1 0
sion tensor, —5* , and a highly anisotropic crowdion tensor, >

0 1 0 2d2

On

22Tt must be remembered that the rate equations do not include any terms to account for coalescence and
so do not predict it.

2 For fractal islands screening in the slow diffusion direction is nonexistent!

%3 This low coverage was chosen so that effects of coalescence are avoided.
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Figure 3.15: Plots of scaled island size distributions at § = 0.05 grown with Ze = 107* for fractal
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inspection, one can see two ranges of the diffusion tensor that lead to qualitatively different
trajectories of a diffusing adatom (figure 3.16). The first of these has R, = O(R,) (tra-
jectory (a) in figure 3.16). In this case crowdions are as likely to occur as simple hops.
The trajectory looks like that of an anisotropically hopping random walker; there are large
regions of the surface which have a high density of site visitation. In the other extreme the
rate of crowdion formation can be very small in comparison to the hop rate (R, < R.),
this is shown by trajectory (b) of figure 3.16. Trajectory (a) is qualitatively different than
path (b), which has relatively few crowdion jumps but the jumps are large enough to carry
the walker well away from the area it has already searched. Between these big jumps are
local areas which are heavily explored by isotropic hopping.

The path of the adatom diffusing with large crowdion jumps looks similar to the
trajectory of a Lévy walk (in one dimension).?8 Lévy walks are a class of random walks in
which the second moment of the jump probability distribution is infinite.?” These walks

have no intrinsic length scale, the trajectory is self-similar.?® This is not the case for the

26Gtrictly speaking this is a Lévy flight as each jump is assumed to happen instantaneously

*TTo have an infinite second moment of the jump length probability distribution means that the distri-
bution must decay algebraically. It should be noted that this implies that species diffusing by a Lévy walk
will have an infinite diffusion coefficient as infrequent long jumps cannot be neglected (in the same way that
the elastic interaction between dislocations separated by large distances cannot be neglected). The diffusion
length of a Lévy walk scales linearly with time.

28 A simple hopping walk is also self-similar in the sense that there is no length scale to the fluctuations
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Figure 3.16: Panels (a), (b), and (c) show trajectories of diffusing adatoms moving by crowdion
jumping and simple hopping. In all cases the diffusion tensors are identical with /Dy Dy, = %

1
(atomic units squared per time unit) and A = (g—::) * =2v/2 and hopping is isotropic. In panel (a)
the diffusion jump length, d., is 10 atomic spacings, whilst in (b) and (c) it is 100. The trajectories in
(a) and (b) are 4000 time units long, whilst (c) is 80000. It can be seen that the diffusion trajectories
in (a) and (b) are qualitatively different, while increasing the increasing the diffusion time of the (b)
to (c) yields a trajectory that resembles (a). It must be noted that the scales of the  and y axes
are different in plots (a), (b) and (c) and in all cases the numbers given are atomic spacings. Plot
(d) shows the number of unique sites visited with time for the two sets of diffusion parameters. The

squares are for diffusion with d. = 10, and the circles are for d. = 100.
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crowdion walk (whose jump probability distribution is Gaussian and does have a finite
second moment); increase the diffusion time and the perambulation resembles ordinary
hopping again. This can be seen from trajectory (c) in figure 3.16. The implications of this
are that if the qualitatively different trajectory impacts island growth then the time scale
over which atoms diffuse is also important, and there will be a window of growth parameters
where island growth behaves differently (if it is going to). Bychuk and O’Shaughnessy
[69] observe anomalous diffusion of adatoms on a solid liquid interface where Lévy type
diffusion arises (over a limited time scale) because adatoms can appear to make large jumps
by desorbing from the surface and diffusing through the liquid before reabsorbing to the
surface. Amar, Family and Hughes [59] perform KMC simulations for growth of fractal
islands in the presence of true Lévy diffusion where the probability of a jump of length Az
is given by P(Az) ~ Ax~% P where d, is the dimensionality of the substrate, and £y, is
the Lévy exponent that determines the length of the tails of the probability distribution.
Normal diffusive (v/Dt) behaviour occurs for f;, > 2, whilst 2 > 87, > 1 is referred to as
“enhanced diffusion”, and B;, < 1 is “ballistic” diffusion. These researchers find that the
island density scaling exponent, y, for both one and two dimensional diffusion rises with

decreasing Lévy exponent.

Stable island density Two sets of KMC simulations that included crowdion hopping
were performed. In both cases the simple surface hopping was set to be isotropic. In one
case the mean squared crowdion jump length d. was 10 atom spacings and in the other
it was 50 atom spacings. Figure 3.17 shows the evolution of the density of stable islands
with coverage for anisotropic diffusion with different extents of crowdion jumping. There
are two features in these plots worthy of comment. First, the number density of islands and
monomers rises sharply with increasing d.. This is consistent with the reduction in the area
searched by the crowdion flight as the jump length is increased.?® Numerical calculations
of the area searched as a function of time (in scaled units) are shown in figure 3.18.

A second, more interesting observation, is the delayed coalescence of fractal islands
due to the increasing the crowdion jump length. The origin of this behaviour lies in the
shape of the island: the embedding area of fractal islands grown with larger values of d.

becomes more circular, and thus coalescence in the slow diffusing direction is delayed.

in the displacement, rather than no intrinsic jump length as is the case for Lévy walks.
2 As d. — oo the isotropic hopping diffusion tensor Dj, — %, and the increased area searched with each
crowdion jump only scales linearly with d..
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Figure 3.18: Site visitation of random walkers moving by simple hopping (dashed lines) and by
crowdion jumping with isotropic hopping with diffusion coefficient D, = 1 b*s~!. Plot (a) is for
X = /2, and plot (b) for A = 2. Both plots show site visitation for: isotropic hopping (o), anisotropic
hopping (O), and crowdion jumping with d, = 10 (<), and d, = 50 (>).
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Island-island correlations Figures 3.19 and 3.20 show typical archipelago maps for
growth of fractal and compact islands respectively. These figures also show the average
island-island correlation functions from 80 simulations, of which each map is an example.
The island-island correlation function gives the probability distribution of finding a second
island at a position r from island’s centre. It is calculated by taking the autocorrelation
function of the islands’ centres of mass. It can be clearly seen that islands grown with
anisotropic hopping exhibit a shape instability, whilst those grown with isotropic short
hopping and anisotropic large jumps do not. So crowdions suppress the shape instability.
More striking is the denuded (dark) regions in the island-island correlation plots. It can
be seen that anisotropic arms of the denuded regions are reduced (in intensity but not in
length) when the crowdion jump length increases. This means that the screening by islands
becomes more isotropic with increasing d.. Both of these observations can be explained by
more closely examining the diffusion in the neighbourhood of the island edge. This will be
done by considering macroscopic diffusion where the concentration gradients are ensemble
averages.

Fick’s first law, and the definition of the diffusion coeflicient, are appropriate only
in regions with a slowly varying concentration gradient (relative to the jump length).3 At
the island edge the concentration gradient changes abruptly, so within d. lattice spacings
of the island the simple diffusive model is no longer appropriate.

The transport of monomers to an island edge can be broken into two regions: an
outer region greater than d. from the island edge where diffusion is fast and crowdions can
be included in Fick’s first law, and an inner region in which half of the crowdion formation
events instantly remove monomers to the island edge (the other half move atoms to the outer
region). The inner region can be modeled by slow isotropic diffusion with a distributed sink
strength given by the crowdion formation rate. This can be seen in concentration profiles
from numerical simulations of diffusion to a sink edge in figure 3.21. Thus, the island edge
sees an isotropic slow diffusion field. So, providing perturbations in island size do not poke
through the inner isotropic region the asperities gain no extra growth velocity and the island

shape is stable.

30Tt can be seen by working through the simple derivation of Fick’s first law for diffusion with atomic
jumps of [ lattice spacings that one must assume the gradient in concentration is uniform over 2/ lattice
spacings.
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Figure 3.19: Micrographs of islands and corresponding island-island correlations plots (averaged
over 80 maps) at coverage § = 0.05, grown under fractal growth conditions with 22 = 107* and
A = 2. Plots (a) and (b) (on the previous page) have isotropic hopping and crowdion jump length
d. = 10, (c) and (d) have isotropic hopping and crowdion jump length d. = 50, and (e) and (f) have
anisotropic hopping with no crowdions. The islands in (a) and (c¢) have been shaded uniformly white,
as the majority of the atoms in the islands are atoms that were originally in the substrate. Maps
are 5000 x 5000, whilst island-island correlations are 200b x 200b. Dark regions in the island-island
correlations represent areas with few inter-island vectors.



=

|Ei_.-l_"| = A‘li._ln.'hﬁ:__; =
o
e
St

63



64

© (")

Figure 3.20: Micrographs of islands and corresponding island-island correlations plots (averaged
over 80 maps) at coverage 6 = 0.05, for compact islands grown with Z¢ = 107" and A = 2. Plots
(a) and (b) (on the previous page) have isotropic hopping and crowdion jump length d. = 10, (c)
and (d) have isotropic hopping and crowdion jump length d. = 50, and (e) and (f) have anisotropic
hopping with no crowdions. The islands in (a) and (c) have been shaded uniformly white, as the
majority of the atoms in the islands are atoms that were originally in the substrate. Maps are
500b x 5000, whilst island-island correlations are 20056 x 2000.
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Figure 3.21: Concentration profiles near an island edge calculated numerically after 10° time
units. Thin solid line is calculated for nearest neighbour hopping with a Rp = 1, the dashed line
is for hopping and crowdion diffusion with the same diffusion coefficent as before and R; = 0.2,
R, =8 x 1075, and jump length d. = 100, and the thick solid line is calculated for simple hopping
only with hopping rate Ry = 0.2.
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Figure 3.22: Plots of scaled island size distributions at § = 0.05 grown with Ze = 107* for fractal
(a), and compact (b) islands. Mobility parameters: A = 1 with hopping only (o), A = 2 with hopping
only (¢), A = 2 with isotropic hopping and crowdions with jump length d. = 10 (O), A = 4 with
isotropic hopping and crowdions with jump length d. = 50 (1>).

Island size distribution The mode of diffusion seems to have little impact on the shape
if the island size distribution. Figure 3.22 show the size distributions for fractal and compact
islands, and although both of these distributions have a slightly different shape, they are
changed little by the transport mechanism (smoothing splines have been fit through the
data).

3.4.3.7 Scaling exponent y

The scaling exponent x (in equation 3.9) is calculated by finding the gradient
of a least squares straight line fit to the plot of log;o((ny)) versus log;y (22) (shown in
figure 3.23). The exponent is found to increase for both crowdions and fractal islands from
x = 0.33 for isotropic hopping to x = 0.34, x = 0.35 and x = 0.36 for anisotropic diffusion
(with A = 2) for; no crowdions, and crowdions with jump lengths d. = 10, and d. = 50,
respectively. This could indicate that over the length and time scales associated with an
adatom moving to an island the transport appears to exhibit “enhanced” diffusion. Amar
et al. [59] see x rise from 0.24 to 0.29 for one dimensional diffusion, and go from 0.34 to

0.38 for two dimensional diffusion as fr, is diminished from 4.0 to 1.33 (and the tails of

the jump probability distribution become wider). The situation for crowdion diffusion is
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Figure 3.23: Plot of (n,) vs. Ze for fractal (a) and compact (b) islands grown with: isotropic
hopping (o and solid line), A\ = 2 with anisotropic hopping only (O), A = 2 with isotropic hopping
and a crowdion jump distance d. = 10 (O), A = 2 with isotropic hopping and a crowdion jump
distance d, = 50 (>).

somewhat more complicated as here one dimensional “enhanced” diffusion is embedded in
a two dimensional diffusion field.

Ratsch et al. [67] see an increase in the scaling exponent from 0.33 to 0.38 with
increasing edge mobility from g—; = 0.001 to R = 0.1 as the effective critical island size
rises above unity. As the site searching ability of the crowdion is reduced with increasing d.,
small clusters have more time to diffuse between collisions with monomers, which increases
their relative mobility. It is possible that this accounts for the increasing x for compact
islands but does not acount for the change in x for fractal islands where there is no edge
running.

Linderoth et al., [49] and Giinther et al. [70] have measured the x for island
growth on the quasihexagonal reconstruction of Pt(001) and Au(001), respectively. These
researchers measure scaling exponents that are at odds with predictions from their thorough
KMC investigations. As it is demonstrated above that diffusion with long jumps affects the

” reconstructed

scaling exponent it is possible that the values of ¥ measured for these “hex’
surfaces arise due to some long range self-diffusion mechanism, a possibility overlooked by

both sets of researchers. This is warrants further investigation.

Detecting crowdion growth It was demonstrated above that there is an observable

difference between island growth in the presence of the postulated crowdion diffusing mech-
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anism, and the islands grown by anisotropic simple hopping with the same diffusion tensor.
While distinguishing crowdion behaviour by comparison of simulations is straightforward,
experiment offers no such comparison.3!

The scaling exponent, ¥, is one experimental observable impacted by crowdions,
but edge running or other anomalous diffusion processes must be ruled out, and experi-
ments must determine x very accurately. Similarly, the shape of fractal islands is another
observable by which crowdions might reveal themselves. However, one must observe islands
with circular embedding areas in the presence of strongly anisotropic diffusion. This would
require seeing long denuded arms in the island-island correlations (these can be weak but

must be long). This however requires temperatures low enough to freeze out edge diffusion

(so that the islands are fractal) but not so low that crowdions are also frozen out.

3.5 Conclusions

In this last chapter a new long-range adatom self-diffusion mechanism was de-
scribed, and some routes to experimentally observing it were outlined. The influence of
these crowdions on island growth was compared to anisotropic nearest neighbour hopping.
A continuum rate equation description of submonolayer island growth has been extended
to include anisotropic hopping diffusion. It was found that continuum treatments of island
growth are poor for systems with highly anisotropic diffusion. This is because macrosopic
diffusion theories assume that mass transport behaves macroscopically the same indepen-
dent of the transport mechanism. While this is certainly the case over large scales, this is
not true over small scales such as near island edges or in small area searching (for monomers
etc.).

It was demonstrated that crowdions do give rise to qualitatively different island
growth behaviour but there is no obvious signature that can determine their presence in a
real growth experiment.

Finally, it was suggested that a metastable displacive long ranged diffusion mech-
anism, similar in spirit to that postulated for a crowdion, may be in operation on the
“hex” reconstructed (001) surfaces of FCC metals. As such, data for island growth on these

surfaces should be reexamined with this in mind.

31There is only the experimental data there is no data from a known diffusion type with which to compare.
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