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Self-assembled nanostructures through wavelength-controlled spinodal
decomposition
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The self-assembly of nanostructured materials through controlled wavelength spinodal
decomposition is explored using a simple model. The model assumes that a homogeneous alloy is
deposited on a rigid, periodically strained substrate. A linear stability analysis establishes that the
film will undergo spinodal decomposition with the dominant wavelength determined by the
periodicity of the substrate strain. ©2003 American Institute of Physics.
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Current magnetic recording technology is bounded
the superparamagnetic limit. To achieve maximum bit d
sity at this limit requires the recording media to be compo
of an array of 8–9 nm single domain ferromagnetic partic
with a monodisperse distribution of particle sizes.1 Creation
of such structures using lithography is not currently e
nomically feasible, nor is one likely to achieve the requir
uniformity through direct deposition methods.

It has been argued theoretically,2,3 and demonstrated
experimentally,4 that an array of misfit dislocations may in
troduce a preferred length scale during submonolayer ep
ial growth. Under favorable conditions one may grow high
ordered arrays of misfit dislocations,5–7 yielding a periodi-
cally strained film surface. If this strained film is now used
a substrate for the growth of a second alloy film, and t
second film is unstable to spinodal decomposition, one
pects intuitively that the preferred wavelength for the deco
position will be dictated by the substrate strain. Hence, s
a system offers the opportunity to generate nanostructed
terials that may be suitable for technological applications

It is demonstrated here, using a linear stability analy
of a simple model, that the most unstable wavelength in
decomposing film is set by the periodicity of the substr
and that a thin film not subject to spinodal decomposit
will still develop a periodicity dictated by the substrate. Fu
ther, even in the absence of a periodically strained subst
films not unstable to spinodal decomposition in the bulk m
display spinodal decomposition in a thin film, a conclusi
consistent with those of Refs. 8–10.

The studied rudimentary model of spinodal decompo
tion is depicted in Fig. 1. An elastically isotropic binaryA–B
alloy is deposited on a rigid substrate~i.e., it is assumed tha
the film is much more compliant than the substrate! with a
periodically varying lattice parameter along thex direction
only. The alloy is assumed to have elastic moduli and surf
energy independent of composition but the two species c
prising the film differ in molar volumes.

a!Electronic mail: dcchrzan@socrates.berkeley.edu
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The film is initially homogeneous, with a concentratio
Co of B, such that there is nonet lattice mismatch with the
substrate. This results in thex component of the total strain
of the film at the interface beingexx

T (x,2h)5es cos(ksx).
The stability of the homogeneous film with respect

segregation is assessed by calculating the change in free
ergy of the film associated with the introduction of a conce
tration wave with infinitesimal amplitude. This free energ
change includes two contributions: one arising from t
chemical composition of the film, and another arising fro
elastic strains.

The analysis presented here follows closely that
Cahn,11 and is similar in spirit to the prior analysis of thin
film spinodal decomposition.8,12–14The concentration is cho
sen to be

C~x,y,z!5Co1DC cos~kcx!, ~1!

with DC!Co . The composition fluctuation is assumed to
uniform throughout the film thickness and neglects any m
phological instabilities in the film surface. This assum
structure is correct in the limith!kc

21. In the more genera
case, the assumed structure mayprecludethe most unstable
mode. However, if the film is unstable with respect to t
growth of this constrained composition fluctuation, then t
film is certainly unstable to the growth of the lowest ener
concentration fluctuation.

The mean chemical free energy density of the film is

FIG. 1. Diagram showing infinite homogeneous isotropic elastic film o
rigid substrate with a periodic lattice constant. The origin is at the f
surface of the film.
4 © 2003 American Institute of Physics
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^ f ch&5 f 01S f 2

4
1

Gkc
2

2 DDC2, ~2!

with f i5(] i f /]Ci)C5Co
, andG describing the excess grad

ent free energy associated with the fluctuation.
The total strain tensor,eT(x,z) in the film can be con-

sidered to have three components:eT(x,z)5eS(x,z)
1eC(x,z)1eSF(x). Here, eS(x,z) is elastic strain imposed
on the film by the substrate,eSF(x) is the dilatational stress
free strain that accompanies the change in local concen
tion, andeC(x,z) is the elastic strain induced by the stre
free strain so thateT(x,z) satisfies the condition of compa
ibility. The present problem may then be solved by writi
Hooke’s law incorporating the stress free strain, and th
solving the appropriate partial differential equation. This a
proach, while obviously correct, is not the most intuitiv
Here, an alternative, more intuitive solution is presented.

The substrate imposes a condition of plane strain tha
independent of the concentration fluctuation, soeS(x,z) must
independently satisfy the condition of compatibility, and th
can be found by solving the biharmonic equation,“

4c50,
wherec is the Airy stress function. This equation is simp
the compatibility condition for plane stress where the stra
are written in terms of the stresses~using Hooke’s law! and
the stresses are, in turn, written in terms of the Airy str
function ~satisfying the equilibrium equation!. The general
form of the stress function for the current problem is

c~x,z!5$A sin~kx!1cos~kx!%$~a01a1z!sinh~kz!

1~b01b1z!cosh~kz!%. ~3!

eS(x,z) is computed by findingA, a0 , a1 , b0 , and b1 ,
which satisfy the boundary conditions of no surface tractio
and coherence with the substrate.

The compatibility strain,eC(x,z), is found by consider-
ing the elastic strain tensor,eB(x), of a bulk solid containing
a concentration plane wave~after Cahn11!, and adding a cor-
rective strain to remove surface tractions. Since b
eS(x,z), andeB(x)1eSF(x) independently satisfy the cond
tion of compatibility, then the corrective stress also satis
the biharmonic equation and can be found by forcing
stress function in Eq.~3! to be coherent with a uniform sub
strate and cancel the surface tractions resulting fromeB(x).

Computing the strain state in this fashion allows t
elastic energy to be calculated as the sum of the elastic
ergy of a plane wave heterogeneity in a bulk material p
the work done as the interfacial and surface corrective str
are applied. This procedure yields an elastic energy den

^Eel&5^Ebulk&2acc~uc!~11n!2ec
21ass~us!~12n!2es

2

2dks ,kc
acs~us!~12n2!eces , ~4!

with dks ,kc
the Kronecker delta,uc5hkc , us5hks , and

^Ebulk&5mec
2 11n

12n
, ~5!

acc~u!58Wo~u!sinh2~u/2!$u1~122n!sinh~u!%, ~6!

ass~u!5Wo~u!@2u1sinh~2u!#, ~7!
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acs~u!54Wo~u!@u2u cosh~u!1~122n!sinh~u!#

12Wo~u!sinh~2u!, ~8!

Wo~u!5
m

u~12n!
$512u22@4n~322n!

1~324n!cosh~2u!#%21. ~9!

Here,m andn are the shear modulus and Poisson’s ratio
the film, andec5DVDC/3, with DV5VB2VA , whereVA

andVB are the molar volumes of the pure components. In
limit that the film is very thin in comparison to the heter
geneity and interface strain periods~u→0!, the mean elastic
energy density becomes

^Eel&→
m

12n H ec
2~11n!1

es
2

2
2dks ,kc

eces~11n!J .

~10!

In the limit of the thick film the elastic energy becomes th
of the infinite solid in Eq.~5!.

An infinitesimal fluctuation will grow if the mean free
energy density of the system (^Eel&1^ f ch&) is decreased with
increasing concentration amplitude. The only contribution
the free energy is linear inDC, defined to beD f lin , propor-
tional to dks ,kc

, and is given by

D f lin52acs~us!~12n2!es

DVDC

3
. ~11!

The functionacs(u) is positive for allu, so the film is un-
stable with respect to the growth of a composition fluctuat
that matches the substrate strain. Since the reduction in
energy due to this term is linear inDC, this mode is the mos
unstable during the initial stages of decomposition. Furth
more, the instability of the film to first order inDC is dic-
tatedentirely by the elastic properties of the film: chemic
contributions to the free energy do not affect this instabili
Therefore, this instability occurs in all alloy films with
DVÞ0 on a strained substrateregardless of whether the bul
system displays a miscibility gap. Further, this instability can
appear at technologically relevant wavelengths smaller t
those accessible to chemically driven spinodal decomp
tion.

At all other wavelengths, the stability of the film to con
centration fluctuations is determined by terms of orderDC2.
These terms are defined asD f quad and are

D f quad5H q~kc!

4
2acc~uc!~11n!2

DV2

9 J DC2, ~12!

with

q~kc!5 f 212Gkc
214m

DV2

9

~11n!

~12n!
. ~13!

The film is unstable with respect to the growth of compo
tion waves with wave vectorkc if the term in braces in Eq.
~12! is negative, while the stability of bulk modes depen
on the sign ofq(kc). The functionacc(u) is zero in the limits
that thatu→` andu→0 ~the bulk solid and the infinitesima
film! and positive every where in between. It can be se
from Eq. ~12! that alloys that as bulk solids are strain sta
lized may be unstable when in the form of a film. Moreov
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in such cases, thekc50 mode will not be the first to go
unstable~as is the case for bulk alloys!, but there will be a
closed domain of unstable modes with a length scale g
erned by the film thickness.

Simply knowing that an alloy film will segregate is no
sufficient for deciding if an alloy is a suitable candidate f
producing self-assembled nanostructures. It is necessary
to understand the extent of segregation, and the relative
plification rates of competing modes. The driving force f
evolution of a composition fluctuation is the variation in t
mean total free energy,^d f tot&, which accompanies a varia
tion in the concentration,dC(r ). Following Cahn, the gen
eral form of this variation is

^d f tot&5E
V

1

V F f 11 f 2C̃22G“2C̃1
dEel

dC GdCdV, ~14!

where the composition distribution is given byC(r )5Co

1C̃(r ). The term in brackets in Eq.~14! is the chemical
potential,h~r !, so if evolution of the composition distribu
tion is diffusion mediated then the change in concentrat
with time is given by]C̃/]t5“@M“h(r )# where M is a
mobility coefficient. This diffusion equation must be solve
such that the change in concentration with time is consis
with the dC(r ) for which h~r ! is calculated. In general, th
assumed form for the heterogeneity@Eq. ~1!# does not satisfy
this requirement, and one cannot predict the amplificat
rate of the unstable modes presented above.

In the limit that the film is very thin the elastic energ
Eq. ~10! tends to be that of a film in which there is noz
component of the strain. In this limit the assumed form of
composition fluctuation becomes meaningful. Solving
diffusion equation at this limit gives

C̃~ t,x!5
p cos~ksx!

q~ks!
~12e2Mks

2q~ks!t!

1E
2`

`

dkfkeikxe2Mk2q~k!t, ~15!

where p5esm(2DV/3)@(11n)/(12n)# and fk is the kth
Fourier component of the initial concentration distributio
As is the case with a bulk solid,all fluctuations withq(k),0
will grow exponentially until the assumed linearity is n
longer valid. Fluctuations withq(k).0 will decay to zero
with the exception of the fluctuation in phase with the su
strate strain which approach a steady state composition
file:

C̃~`,x!5
p

q~ks!
cos~ksx!. ~16!
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An estimate of the amplitude of this fluctuation for a mater
in which bulk spinodal decomposition is inhibited by th
elastic strain indicates that the steady state amplitude of
concentration wave can be large enough to invalidate
linear assumptions made here, so the effect is expected t
significant.14

In conclusion, it is demonstrated that alloy films depo
ited on a periodically strained substrate may spinodally
compose and the initially most unstable concentration fl
tuation uniform throughout the thickness of the film has
wavelength determined by the periodicity of the substra
While there may be concentration fluctuations more unsta
than those considered here, the current calculation es
lishes rigorously the instability of some thin films to spinod
decomposition at the nanometer scale. In the thin film lim
the assumed form of the composition fluctuations is the
pected form, and the linear amplification rates can be
tained. Hence, wavelength-controlled spinodal decomp
tion is a viable candidate for the self-organized growth
nanostructures.
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