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Abstract

The amplitude dependent mechanical loss due to bowing of an idealized Frank–Read source is studied using both

simulation and analytical techniques. Dislocations are modeled within isotropic elasticity theory, and are assumed to be

in the over-damped limit. The dynamics incorporated in the model are tested directly, by comparison with the exact

solution to the linearized isotropic elasticity theory of the mechanical losses. The model is then applied to the study of

the mechanical losses from two coupled dislocations. It is concluded that the implemented dislocation dynamics method

represents an accurate solution to the initially stated problem, that the elastic string model often employed to model

losses is inadequate, and that dislocation interactions may alter substantially the dislocation component of the spectrum

observed during internal friction experiments.

� 2002 Elsevier Science B.V. All rights reserved.

1. Introduction

There are a number of efforts worldwide aimed

at computing the dynamic evolution of collections

of dislocations with the long-term goal of pre-

dicting mechanical properties [1–10]. To achieve

this long-term goal, dislocation simulations must

provide an adequate representation of the pur-

ported physics, and the physical assumptions im-

plied by the simulations must be verified. Thus,

during the current period of rapid dislocation

simulation development, it is necessary both to use
dislocation dynamic simulations to advance un-

derstanding of mechanical properties while at the

same time to demonstrate their validity.

Initial efforts to validate dislocation simulations

and to exploit their predictive power focused at-

tention on final dislocation structures [3,9–12].

Later work emphasizes more the dynamics of

collections of dislocations [5,13].
When resulting dislocation structures are used

to validate a dislocation model, the dynamics of a
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population of dislocations are simulated, and the

computed structures are compared with experi-

mentally observed patterns. However, one of the

primary difficulties in developing a theory of the

formation and evolution of dislocation structures

is that many different theories may yield simi-
lar structures. Therefore, the task becomes not to

model dynamics that generate patterns similar to

those observed experimentally, but rather to insure

that the physics underlying the pattern formation

is the same in both the experiment and the theory.

A direct comparison of the modelled dynamics of

interacting dislocations to experimental observa-

tions helps to establish this similarity.
Often, this comparison is done by simulating

the constant strain rate response of a material (see

for example [13]). A favorable comparison offers

some evidence that the simulated dislocation dy-

namics are similar to those underlying the results

of experiment. However, modeling of a constant

strain rate test starting with dislocation dynamics

involves a significant level of ‘‘coarse graining,’’
and the final comparison is insightful only insofar

as the coarse grained result is sensitive to small

scale details.

Mechanical spectroscopy experiments [14] offer

an additional check for theories of dislocation

dynamics. In a typical experiment, a bias stress is

applied to the sample, and small amplitude oscil-

latory (in time) stress is superimposed. The work
done by the oscillatory stress is a measure of the

loss. These experiments are particularly attractive,

because they probe dislocation dynamics directly.

The experimental mechanical loss as a function of

frequency can be directly compared with the loss

predicted by simulations of dislocation structures;

however, similar to comparisons with constant

strain rate experiments, this comparison provides
a stringent check only if the assumed model for

the mechanical losses is really capable of describ-

ing the experimental situation. This comparison is

confounded by the fact that experiments measure

the response from many loss mechanisms simul-

taneously. Hence experiments must be designed

carefully in order to evaluate the contributions

from glide of the dislocations as opposed to other
other loss mechanisms, for example, dislocation

climb or diffusion of solutes.

One must also insure that dislocation dynamics

simulations are a good representation of disloca-

tions within elasticity theory. The quality of this

representation should not be taken for granted, but

rather, should be checked whenever possible by

direct comparison with exactly solved problems in
the dynamics of dislocations governed by elasticity

theory. A common test, for example, is to calculate

the operation stress of a Frank–Read source.

An additional check is presented here. The

small stress amplitude mechanical loss problem is

solved analytically, and the results then used to

validate the dislocation dynamics simulations.

Because the dislocation dynamics simulation has
been so validated, its use can be confidently ex-

tended to probe other regimes of mechanical loss,

such as large amplitude losses and mechanical

losses stemming from two interacting dislocation

segments.

In these studies, it is demonstrated that the

elastic string model proposed by Granato and

L€uucke [15] is sometimes an inadequate model for
the losses. Further, it is demonstrated that dislo-

cation interactions exert a large influence on the

resulting losses. Hence simple models for me-

chanical losses that rely on the response of isolated

dislocations are probably inadequate descriptions

of the losses from dislocation structures.

The remaining sections are organized as fol-

lows: Section 2 of this manuscript describes briefly
the computer model employed, as well as a test of

the accuracy of the force computation scheme.

Section 3 provides an introduction to the physical

problem, but the discussion is limited to low am-

plitude oscillatory stresses in the absence of a bias

stress. In this limit, an exact solution is obtained

for the mechanical losses. The exact solution is

then compared with the predictions of dislocation
dynamics simulations and the predictions of the

Granato–L€uucke model for the losses. Section 4

treats a number of more general cases, including

large amplitude stress oscillations and the presence

of non-oscillating bias stresses that are often

applied in experiments. Section 5 discusses mechan-

ical losses stemming from two interacting disloca-

tions segments. Section 6 contains the conclusions,
finally the acknowledgements and a mathematical

appendix.
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2. Computer model

A previously developed model [16,17] is adap-

ted to simulate the mechanical loss response of

simple dislocation structures. In this model, dis-
locations are described by isotropic elasticity the-

ory and are presumed to be contained in an infinite

homogeneous medium. The simulation accounts

for the full stress state due to all dislocations

considered. The dynamic behavior of the disloca-

tion is assumed to be in the over-damped limit and

governed by a linear drag law. Radiation and in-

ertial effects are neglected. The drag coefficient is
assumed to be independent of dislocation velocity

and orientation.

These assumptions are most appropriate for

simulatings dislocations in materials with low

Peierls barriers, at temperatures above the Debye

temperature, and when loading frequencies are

sub-GHz. The parameters are chosen, therefore, to

represent Al: A Burgers vector of magnitude
b ¼ 2:86 �AA, a shear modulus of l ¼ 26:5 GPa, a

drag coefficient of B ¼ 0:08 Pa s, a Poisson�s ratio
of m ¼ 0:347, and the dislocation is treated as if

undissociated. The small scale cutoff procedure

employed by Hirth and Lothe [18] is applied, and

the cutoff is chosen to be (except where noted)

q ¼ b=3.
The simulation decomposes the dislocation into

segments extending between points. The points are

indexed by the subscript i and the vector ûui indi-

cates the glide direction normal to the dislocation

line direction at point i. The velocity of the ith

point is given by

oui

ot
¼ ðððri � bÞ � niÞ � ûuiÞûui

B
; ð1Þ

where ni and ri are the line direction and stress at

the ith point, b is the burgers vector. The stress felt

by the ith dislocation point, ri, reflects the con-

tributions from the applied stress as well as the

self-stress of the dislocation and the stress from all

other dislocations in the solid. Eq. (1) is integrated

using an adaptive step size fourth order Runge–
Kutta integration scheme. This approach is de-

scribed fully in reference [16].

A dislocation configuration typical of those

considered here is shown in Fig. 1. Only disloca-

tion segments lying in the z ¼ 0 plane are mo-

bile. The corners of the dislocations are assumed

fixed.

The force on each of the points is composed of

two contributions: A contribution from the seg-

ments nearest to the point in question, and

the contributions form all further segments. The

nearest neighbor contributions are computed by
assuming the dislocation arc passing through three

adjacent points is part of a circular arc, and com-

puting the exact contribution to the stress on the

point in question. The contributions from seg-

ments further away are computed by assuming

that linear dislocation segments are connecting

each of the defined dislocation points.

The presence of corners in our dislocation
configurations requires further approximation.

Isotropic elasticity theory predicts that stress fields

near dislocations ‘‘corners’’ (e.g. the ends of cross-

slipped segments) become infinite. These infinite

stresses are treated using a cutoff scheme described

below. Nevertheless, even with the cutoff, the

corner stresses will remain quite large, and one

expects that the corners will not remain atomically
sharp. Motion at or near corners is therefore non-

conservative. Unfortunately, the extent to which

corners round is difficult to ascertain from existing

calculations. Consequently, it is not possible to

Fig. 1. An edge oriented Frank–Read source.
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provide a well-tested description of ‘‘corner’’ dy-

namics for the dislocation codes.
The current simulations do not allow the

‘‘corners’’ of the dislocation to be mobile. How-

ever, corners still pose difficulties. As such the code

is prevented from considering points ‘‘too close’’

to any corner. This in turn raises the question of

how close is ‘‘too close’’. As a working rule the

small scale cutoff distance is used, but this has no

physical basis. (The small scale cutoff is a distance
chosen so that elasticity theory correctly calculates

the total energy of a straight dislocation with out

including a core energy term. 2) A rigorous treat-

ment of corner dynamics awaits further study.

The quality of the force calculation in the code

has been verified by considering the exact results

for circular dislocation arcs. Fig. 2b compares the

exact analytical solution for the force, the calcu-
lation of the force using the model, and the pre-

dictions of a simple line tension model assuming

the proper orientation dependent line tension [18].

Fig. 2b indicates that the forces predicted by the

scheme described here are in good agreement with

the exact result for a circular arc with a diameter of

1 lm. Further, the line tension approximation

employed in more simple studies can err by as
much as 25%.

A more complete test of the simulation code,

however, requires that one investigate directly the
dynamic response of dislocations. This, in turn,

requires the exact solution to a dislocations dy-

namics problem that can serve as a check for the

simulations. This exact solution is presented in

Section 3.

3. Mechanical loss in the low stress–amplitude limit

As mentioned in Section 1, mechanical spec-

troscopy offers the promise of probing dislocation

dynamics directly. However, the same mechanical

spectroscopy experiments yield signals from a va-

riety of loss mechanisms, and associating features

of the loss spectra with specific mechanical pro-

cesses is often difficult. Therefore, a direct favor-
able comparison of simulated loss spectra with

experiment is a necessary but not sufficient test of

the quality of the theory. An alternate approach is

to compare the results of simulation with analyti-

cal results known to be correct.

Unfortunately, a general analytical expression

for the mechanical losses expected from a dislo-

cation within an infinite isotropic elastic medium is
not available. It is demonstrated here, however,

that in the limit that the amplitude of the dislo-

cation�s oscillatory motion is smaller than the

small scale cutoff employed in the computation of

forces, that one can obtain an analytical solution

for the expected mechanical losses and dislocation

Fig. 2. Test configuration: (a) shows a 1 lm artificially semi-circularly bowed, edge oriented, dislocation source, (b) shows the

magnitude of the self-force as a function of angle round the bowed arc calculated using the numerical scheme (circles), the analytic

solution (solid line), and using straight line tension approximation (dashed). The agreement between the exact result and the pre-

dictions of the computer model is excellent.

2 While not the only possible choice, this is the most

convenient for the present simulations.
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configurations. While in a ‘‘real’’ crystal, this limit

cannot be obtained (as mentioned above, the small

scale cutoff for dislocation forces is typically of the

order of b=3) it is possible to explore this regime

using the dislocation dynamics model described in

Section 2.
The simple dislocation configuration, of a

closed rectangular loop forming a Frank–Read

source, shown in Fig. 1, is the starting point for the

calculations. Only the dislocation segment on the

glide plane is glissile, and the loop is closed with a

sessile segment 10 lm from the slip plane. Mecha-

nical losses from the driven dislocations are cal-

culated according to the following procedure. A
periodic stress (and later, static bias stresses) is

applied to the dislocation, and the area swept out

by the dislocation as a function of time is recorded.

The mean energy loss per cycle from the disloca-

tion is calculated according to

DW ¼
Z sþ2p=x

s
ra cosðxtÞb oA

ot
dt

� �
; ð2Þ

where s is a time in the ‘‘steady state’’ regime, x is
the angular frequency, and ra cosðxtÞ is the time

dependent applied shear stress at time t. (Here the

brackets denote a time average over successive

cycles of the oscillator. These brackets reflect the

numerical procedure used to compute the losses.

In a perfect world, the losses would be perfectly

periodic, and no averaging would be required.)

The time-dependent strain from the motion of this
dislocation, �, is proportional to AðtÞ, the area

swept out at time t, and the number of disloca-

tions. The loss is taken to be proportional to the

area of the area vs stress hysteresis loop. 3

The starting point for the analysis is the equa-

tion of motion for an elemental segment of dislo-

cation at position r and with line direction and

burgers vectors n and b.

B
or

ot
¼ rðrÞ � b� nðrÞ: ð3Þ

Here rðrÞ is the stress tensor at r, which is the sum

of the externally applied stress and the self-stress

from the whole dislocation.

The stress state is given by

rðrÞ ¼ ra cosðxtÞ þ SðrÞ; ð4Þ

where ra cosðxtÞ is an externally applied sinusoidal
stress and the self-stress is given by

SðrÞ ¼ l
4p

I
line

ðb
�

�r0Þ 1
R
	 dl 0

�

þ l
4p

I
line

dl 0
�

	 ðb�r0Þ 1
R

 ðr0 � b� dl 0Þ

� rð � r
 Ir2Þ R
ð1
 mÞ

�
; ð5Þ

where m is Poisson�s ratio, dl 0 ¼ nðr0Þjdl0j (where dl
is an incremental distance along the line) and R ¼
jr0 
 rj [18]. The cutoff procedure employed is the

same as used by the dislocation code. Note that the

statement of the problem here neglects elastic ra-

diation effects. Instead, the stress field felt by the

dislocation at any instant of time is taken to de-

pend only on the applied stress at that time, and

the current configuration of the dislocation. This

approximation is most suitable at low driving
frequencies.

The small amplitude approximation for the

dislocation�s motion is consistent with the follow-

ing description of the dislocation configuration.

The mobile segment of the Frank–Read source is

limited to the range 06 x6 L. This allows the

glissile dislocation line to be parameterized in x

giving the position of the dislocation line r ¼ ðx;
yðx; tÞ; 0Þ. Forbidding over-bowing and pinning

the ends of the dislocation allow the mobile section

of dislocation line to be represented by a sine

Fourier series:

yðx; tÞ ¼
X1
n¼1
n odd

anðtÞ sin
npx
L

� 	
: ð6Þ

An exact (but frightening) expression for the

force per unit length that the dislocation exerts on

its self ðFselfÞ is obtained using the Peach–Koehler

formula on the Fourier representations of the

dislocation line and its line direction

3 In the present work it is meaningless to discuss a quality

factor, as there are a finite number of dislocations embedded in

an infinite medium.
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Fself ¼ S x;
X1
n

anðtÞ sin
npx
L

� 	
; 0

 !
� b� n rð Þ:

ð7Þ
The self-stress can be well approximated by the

Taylor series expansion of the ŷy component of the
Fself about the equilibrium position in terms of

the Fourier coefficients fang if the set of Fourier

coefficients fang < np=L. Moreover it can be shown

that the true self-force is well approximated by just

the first order terms in this series if the amplitudes

fang are small in comparison to the elastic cutoff q.
One can therefore neglect modes with wavelengths

smaller that the elastic cutoff.
When only terms first order in fang are included

in the Taylor series expansion the ŷy component of
the self-force becomes the sum of force distribu-

tion functions, fnðxÞ for each mode in the Fourier

series:

Fy self �
X1
n¼1
n odd

anðtÞfnðxÞ: ð8Þ

The derivation of the force distribution functions

and their general form are given in Appendix A.

With these approximations in place the original

problem can be recast as the following coupled

ordinary differential equations,

B
X1
n¼1
n odd

sin
npx
L

� 	danðtÞ
dt

¼ bra cosðxtÞ

þ
X1
n¼1
n odd

anðtÞfnðxÞ; ð9Þ

where ra is now the externally applied stress am-

plitude resolved on the slip system and x is the

angular frequency of the applied stress. Pre-mul-

tiplying by ð2=LÞ sin mpx=Lð Þ and integrating over
06 x6 L one finds:

B _aaðtÞ ¼ C cos xtð Þ þ a � aðtÞ; ð10Þ
where aðtÞ ¼ ða1ðtÞ; a3ðtÞ; a5ðtÞ; � � �Þ, C ¼ 4rab

p
1
1
; 1
3
;

�
1
5
; � � �Þ and the matrix a is given by

a ¼
a11 a13 . . .
a31 a33 . . .

..

. ..
.

0
B@

1
CA ð11Þ

with the elements

akj ¼
2

L

Z L

0

dxfjðxÞ sin
kpx
L

� �
: ð12Þ

The set of differential equations is decoupled by

finding the set of eigenvalues, fkng, and eigenvec-

tors, f�ng of a so that a�n ¼ kn�n. If the vectors aðtÞ
and C are expressed as linear combinations of the

eigenvectors

aðtÞ ¼
X1
m¼1
m odd

cmðtÞ�m; ð13Þ

C ¼
X1
m¼1
m odd

wm�m; ð14Þ

then the decoupled equations have steady state

solutions of

cmðtÞ ¼ cm� cos xtð þ hmÞ; ð15Þ
where

hm ¼ arctan
Bx
km

� �
ð16Þ

and

cm� ¼
wm

km cosðhmÞ Bx
km

� 	2
þ 1

� � : ð17Þ

Finally, the expression for the dislocation position
becomes:

yðx; tÞ ¼
X1
n¼1
n odd

sin
npx
L

� 	X1
m¼1
m odd

�mncm� cos xtð þ hmÞ:

ð18Þ
The mechanical energy lost per cycle is obtained

by integrating the total work done over the cycle,

so the loss is

DW ¼
Z sþ2p=x

s
dt
Z L

0

dxrab cosðxtÞ dyðx; tÞ
dt

; ð19Þ

which becomes

DW ¼ 
2rabL
X1
n¼1
n odd

1

n

X1
m¼1
m odd

�mncn� sinðhmÞ; ð20Þ
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where �mn is the nth component of the mth eigen-

vector.

In practice, to perform this calculation it is

necessary to truncate the Fourier series. The

proper termination point for the series is dictated
by the rate of convergence. The force distribution

functions, fnðxÞ, have strong extrema at a distance
of q from the pinned ends of the mobile segment

and then decay exponentially with distance from

the pinned points. In order to get a good repre-

sentation of ffnðxÞg with a truncated Fourier series
one must include all eigenfunctions down to those

with wavelengths on the order of q. Clearly the
slow convergence of the Fourier series to the

ffnðxÞg is the limiting step in summing enough

terms to converge the solution (18). To obtain a

fast convergence the set of ffnðxÞg and the a matrix

is calculated using a large inner cutoff length,

q ¼ 5� 10
9 m (’17jbj), and ignoring the static

stress field from the sessile parts of the dislocation.

This procedure does not represent a physically
meaningful situation, but rather provides a result

that can be tested directly in the computer simu-

lation and consequently allows a direct check of

the code�s description of dislocation dynamics. (It

must be noted that the amplitudes of the dis-

placements are such that the number of the grid

points remains constant throughout the entire se-

quence. Hence the comparison here does not
provide a complete test of the dislocation discret-

ization scheme.)

The predictions of the above analytical the-

ory are then compared with the results of simu-

lation and the predictions of the theory of Granato

and L€uucke [15]. The predictions of the simula-

tions are computed as follows. The simple dis-

location configuration of Fig. 1 is established
(although the stresses from the arms and top

closing segment are ignored), and a periodic stress

is applied to the dislocation. The hysteresis loops

(in the stress–area plane) of the dislocation are

recorded. The simulations are run until a numeri-

cally steady state regime is reached (i.e. a regime

in which there is no drift in the area of the hys-

teresis loop, within the numerical accuracy of the
simulations). The steady state losses are then av-

eraged over eight cycles to reduce the numerical

noise.

Fig. 3 shows the loss spectra predicted by the
Fourier series method (using the first 10 terms) 4,

the dislocation code and Granato–L€uucke theory.

(Over the range of frequencies plotted here the loss

calculated by Granato–L€uucke theory, a loss that

accounts for the dislocation mass, is indistin-

guishable from the loss of a massless vibrating

string. As such the massless dislocation approxi-

mation employed by the dislocation code, and the
Fourier series calculation, are valid over this fre-

quency range.) The bowing dislocation segment is

taken to be 1 lm long, and the amplitude of the

periodic driving shear stress is taken to be 0.5

MPa. The Granato–L€uucke theory predicts the

highest frequency of the three for the maximum

losses, and also underestimates the magnitude of

the maximum loss. By adjusting the segment
length within the Granato–L€uucke theory, a better,
but not perfect, prediction for the maximum loss

as well as the position of the loss peak is obtained;

however, the agreement between the analytical

results and the dislocation dynamics simulations

is, however, excellent. (Note that the statistical

Fig. 3. Loss spectra for a 1 lm edge oriented Frank–Read

source, under no bias stress and driven with a 0.5 MPa sinu-

soidal stress. The spectra are calculated using the truncated

Fourier series (solid), the dislocation code (circles), and the

theory of Granato and L€uucke (short-dashed) [15]. The long-

dashed line was also calculated using Granato–L€uucke theory

but for a 1.50 lm Frank–Read source. In all cases dislocation

arms were ignored and an abnormally large cutoff (q ¼ 5�
10
9 m) was assumed. The statistical errors in the simulations

are smaller than the displayed symbols.

4 All terms in Eq. (20) where n6 19 and m6 19.
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error bars associated with the simulation results

are smaller than the size of the symbols used for

plotting.)

The failure of the string-like line-tension treat-

ment of the dislocation to capture the dynamics of

the true dislocation (at this driving frequency) can
be seen by examining the bowing configurations of

dislocation during the loading cycle shown in Fig.

4. It can be seen that the dislocation bows out as

an ‘‘m’’ shape, and that the dislocation nearest the

pinned ends leads the bowing through the equi-

librium configuration. The line-tension approxi-

mation has similar behavior, but to a much lesser

extent.

4. Losses from isolated dislocations

The model is now applied to the study of me-

chanical losses arising from simple dislocation
configurations of the type shown in Fig. 1 with

large bias and oscillatory stresses. Specifically, the

dislocations move under an applied stress of

r ¼ rbias þ ra cosxt; ð21Þ
where rbias is a static bias stress, and the other

parameters are defined as above. In addition, the
full interactions between all segments are now

considered (though only the single segment is al-

lowed to move), and the cutoff, q, is restored to the
value b=3.

Driven isolated dislocation sources have two

temporally stable types of behavior. One behavior

is modelled well by the losses expected from a

linear, damped massless oscillator. The other be-
havior displays a distinctly different frequency

dependence for the mechanical loss.

Fig. 5 shows example hysteresis loops and loss

spectra for biased and unbiased, 1 lm, edge and

screw Frank–Read sources under an 8 MPa driv-

ing shear stress. Both linear and non-linear losses

are represented in these plots. In the ‘‘linear’’

regime, the loss spectrum of the dislocation resem-
bles the Lorentzian shape (see Fig. 5) for a one-

dimensional, massless, damped linear oscillator

given by

DW ¼ F 2
a xD

j2 þ ðxDÞ2
: ð22Þ

Here Fa is the applied force amplitude, j is the

oscillator stiffness, x the angular driving frequency
and D the damping coefficient. The hysteresis

loops of linear behavior are elliptic, as can be see

from Fig. 5. Although the frequency dependence

of loss in this regime approximates Eq. (22), it is

Fig. 4. Bowing configurations of steady state oscillation at 1

MHz calculated using the dislocation code (circles), the first

eight terms of Fourier series method (solid), and the method of

Granato–L€uucke (again with the first eight terms). Calculations

use an inner cutoff q ¼ 50 �AA, and the arm stress in ignored.
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found that the parameters, j and D, are dependent

on the bias stress, rbias, and the cyclic stress am-

plitude, ra. Eq. (22) serves as a simple model for

the losses observed during linear behavior, hence

the features evident in the loss spectra are dis-

cussed below in terms of ‘‘effective stiffness’’ j and

‘‘effective drag’’ D, and how these parameters

change with the stress conditions. For now, it is
noted that the maximum loss appears at a fre-

quency given by xmax ¼ j=D, and the amplitude of
the loss is given by F 2

a =ð2jÞ. It is apparent that if
one increases the value of j, the peak is shifted to

higher frequencies, and the maximum loss is re-

duced. Increasing the drag coefficient D simply

translates the entire curve to lower frequencies. A

set of normalized plots is shown in Fig. 6. At a 10
MPa oscillatory stress, where over-bowing occurs

at low frequencies, the plot is normalized with

respect to the local maxima. The origins of non-

elliptic shaped hysteresis loop are now discussed in

detail.

4.1. Dynamics––non-linear behavior

The ‘‘critical configuration’’ of a Frank–Read

source is the unstable equilibrium shape of the

dislocation under the homogeneous ‘‘critical shear
stress,’’ i.e. the stress at which the source is just

able to produce a dislocation. Due to both the

logarithmic dependence of the dislocation line ten-

sion on length, and the stress field from the dis-

location arms extending normal to the slip plane

(in the considered case), the critical configuration

changes with the pinning length of the source. As

Fig. 5. Loss spectra and hysteresis loops for 1 lm edge and screw Frank–Read sources, under 4.0 MPa and zero bias stresses and

driven with an 8.0 MPa amplitude oscillatory stress.

Fig. 6. Normalized loss spectra for unbiased, 1 lm, isolated,
edge Frank–Read sources, driven with different oscillatory

shear stress amplitudes.
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the pinning length increases (with the same b and

q) the critical shape tends toward the elliptical

shape predicted by the line tension approximation.

The notion of a critical configuration is appli-

cable only to static dislocations, as the dynamic

path of a dislocation is dependent on the loading
conditions. In fact, sources can be loaded cyclicly

with peak stresses very much larger than their

static operation stress without operating as a

Frank–Read source. Considering this situation,

one has the following observations. Earlier work

has demonstrated that there is a stress dependent

characteristic time to operate a Frank–Read

source, and that this time increases rapidly as the
critical stress is approached from above [16]. The

reciprocal of this characteristic time sets a char-

acteristic frequency at which sources will be very

soft but will not bow ‘‘super-critically.’’ For fre-

quencies much smaller than the reciprocal of the

characteristic time, the dislocation source may well

produce new dislocations. For frequencies large in

comparison to the reciprocal of the characteristic
time, the source will not produce new dislocations.

During the portion of the cycle where the dis-

location is super-critical, the effective j is negative:

The resistance that the dislocation offers to further

motion is reduced with strain because the radius of

the dislocation loop is increasing, and the line

tension forces are consequently reduced. In addi-

tion, the line length of the dislocation, and hence
the corresponding area swept out, also increases.

Hence, the club shaped, non-linear hysteresis loop

in Fig. 5 shows a negative stiffness for part of the

loading cycle (the lobe of the loop). The non-linear

behavior of the dislocation when overbowing

occurs causes very large hysteresis losses, and

explains the low frequency points deviating from
the Lorentzian-type loss spectrum in Figs. 5 and 6.

It is interesting to note that internal friction

experiments frequently employ a bias stress to in-

crease the observed signal. Typically it is argued

that such bias stresses facilitate kink nucleation,

and bring two nearby energy minima within range,

the so-called Par�ee condition [14]. The results pre-

sented here suggest that there will be an additional
response arising from pinned dislocation segments

even in the absence of a large Peierls barrier, and

kink nucleation and motion.

4.2. Dislocation arms

The termination of the dislocation arms at the

glide plane results in a significant shear stress on
the glide plane that influences the dynamics of the

bowing segment. (Note that there would be no

shear component on the glide plane if the arms did

not terminate.) Fig. 7 shows a map of the resolved

glide stress on the slip plane around an edge ori-

ented Frank–Read source. As can be seen in the

figure the arm stress field of a screw dislocation

acts against the bowing of the dislocation. In this
sense the glissile segment of an unbiased screw

Fig. 7. Contour map of the resolved glide force on the slip plane for edge and screw oriented sources. Contours are in units of 10

mNcm
1 and are spaced in intervals of 25 mNcm
1. White contours indicate negative forces and black contours positive forces.
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dislocation source may be thought of as a non-

linear elastic string sitting at the bottom of a po-

tential well. The arm stresses from an edge source

on the other hand, act in the opposite way, pro-

moting bowing. Thus an edge source can be seen

as an elastic string atop a potential ridge.
As the length of the pinned segment decreases,

the stress field from the dislocation arms exert a

greater relative influence on the dislocation dy-

namics. This influence leads to unusual dislocation

dynamics discussed more completely below.

It should be noted that the stress topography in

Fig. 7 is for a rectangular dislocation normal to the

slip plane (see Fig. 1). Such a regular loop is un-
likely to be seen in real materials. Moving the arms

of the loop off the normal to the slip plane changes

the stress topography and, in doing so, breaks its

symmetry.

4.3. Edge vs screw

Figs. 5 and 8 show that the losses associated
with initially screw oriented segments are signifi-

cantly lower than their edge oriented counterparts.

The elastic strain energy of a screw dislocation is

reduced relative to the edge dislocation by a factor

of 1
 m. Hence bowing the screw dislocation, so

that part of it assumes edge character, requires

more stress than bowing the edge segment to a

partial screw orientation. As a result, a screw dis-

location is intrinsically ‘‘stiffer’’ than an edge dis-

location. This effect by itself is not sufficient to

explain the large difference in stiffness between
edge and screw sources. The stiffness of the dislo-

cation source also depends on the static stress to-

pography resulting from the stress arms. The line

energy effect and the source arms act in concert to

cause the relative change in stiffness from edge to

screw to be much greater than 1
 m.

4.4. Stress amplitude

The loss from a linear oscillator, Eq. (22), has a

quadratic dependence on the amplitude of the

driving force. As such a parabolic rise in the peak

loss with stress amplitude might be expected. Fig.

8 shows the peak losses as a function of stress

amplitude for edge and screw dislocation sources

under 4.0, 2.0 MPa and no bias stresses. A pa-
rabola is fitted through the first data point in each

series and extrapolated to the last. The curvature

of the plots gives an indication of the effective

stiffness, j, of the sources (smaller curvatures

for larger j). The screw sources show a good

Fig. 8. Change in peak loss vs oscillatory driving stress amplitude for differing bias stresses. See text for details.
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agreement between the data points and the ex-

trapolated line showing that the effective stiffness

does not change much with stress amplitude. The

plots for edge dislocations, on the other hand show

a marked deviation from the zero amplitude stiff-

ness. Furthermore the sign of this deviation
changes with bias stress.

The trends evident in Fig. 8 can be explained by

shape of the quasi-static stress strain curves (or

stress–area curves) for a bowing dislocation sour-

ces that are shown in Fig. 9. The gradient of these

curves give an indication of the stiffness off the

sources. For an isolated screw dislocation the

stress–area curve has a negative curvature up to
the critical configuration (when dr=d� ¼ 0). As a

result screw source driven with a large stress am-

plitude will have a lower average or effective stiff-

ness than if driven with a smaller stress amplitude.

This is not the case for an edge dislocation which

shows an initial stiffening as it bows, a stiffening

attributable to the arm stress field. The result of

increasing the stress amplitude of an unbiased edge
source is initially an increase in j. Biasing the

edge source to the inflection point of the stress–

strain curve gives a softening dependence of j on

the amplitude of the oscillatory shear stress. This

can be seen in the direction of the deviation of the

peak loss from the equilibrium stiffness peak loss

in Fig. 8.

In all cases (including the anomalous softening),

the shift in the frequencies at which the peak loses

occur for different stress amplitudes, is consistent

with the change in effective j indicated by the plots

in Fig. 8. So j for a dislocation source is amplitude

dependent.

4.5. Bias stress

Normalised loss spectra for a 1 lm edge source

driven with on oscillatory stress amplitude of 1

MPa and a variety of bias shear stresses are shown

in Fig. 10. A static bias stress applied to a dislo-

cation source causes the dislocation source to bow,
moving the equilibrium shape of the dislocation

out along the stress area curve (Fig. 9), and thus

changing the small amplitude stiffness. For all

sources, the slope of the stress–area curve de-

creases as the critical configuration is approached.

Edge oriented Frank–Read sources, however, also

display an initial increase in j as they bow. The

effects of this on the peak mechanical losses of a
driven source are shown in Fig. 11, that shows the

peak losses of the normalized spectra in Fig. 10.

This behavior is entirely consistent with Eq. (22)

and the plots in Fig. 9.

Biasing the dislocation as well as changing the

source stiffness, also increases the length of the

glissile dislocation segment as it bows. The drag

coefficient employed by the dislocation code, B,

Fig. 9. The quasi-static plot of area swept vs applied static

stress for a 1 lm source.

Fig. 10. Normalised loss spectra for 1 lm, isolated, edge

Frank–Read sources, driven with ra ¼ 1:0 MPa, for different

biases.
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has units of Pa-s. So for a given stress the dislo-

cation line will advance with the same speed, but

the rate at which it sweeps out area will rise as the
line length increases. In terms of Eq. (22), this is

equivalent to reducing the drag, D, and so con-

tributes a small shifts the loss spectra to higher

frequencies (in addition to the shift in xmax due to

the change in j).

4.6. Near arm curiosity

The stress topography on the slip plane im-

parted by the source arms has a strong effect on

the dynamics of the dislocation and ignoring the

stress from the arms drastically changes the loss

spectrum. As the dislocation is in the damped

limit, and the dynamics are inherently non-equi-

librium, the section of dislocation near the arms

lead as the dislocation bows out (the mobile seg-
ment is ‘‘m’’ shaped as shown in Fig. 4). Under

certain low-stress and high-frequency conditions,

the arm-stress can cause an unbiased dislocation to

become trapped in a slightly bowed configuration,

where the near arm segments stay to one side of

the equilibrium line through out the whole cycle.

In this regime, the centroid of the hysteresis loop

moves away from the origin. The direction of the
shift is determined by the initial sign of the applied

stress. In this case, the center of the hysteresis loop

is shifted away from the origin along the area axis.

5. Elastically interacting dislocations

Experimental observations of post deformation

microstructures reveal a complex dislocation cell

structure, in which most of the dislocations are
bound in cell walls [19–22]. Hence, when one is

interpreting internal friction measurements one

should consider the losses from the collective re-

sponse of cell walls, rather than the response of

isolated dislocations. To the current knowledge of

the authors, there exist no predictions of the me-

chanical losses arising from application of oscil-

latory stress to a cell boundary.
The simulations of the dynamics of elastically

interacting dislocation sources under oscillatory

loads described in this section are a (very!) mod-

est first step towards understanding the dynamic

response of cell boundaries. Simple configura-

tions of two edge or screw dislocations are used.

These consist of two sources, vertically stacked

such that the mobile segments are adjacent to each
other, and have the same line direction and burg-

ers vector. A diagram of these stacked configura-

tions is shown in Fig. 12. The respective glide

planes of the two sources are separated by a height

h. If the glissile segments are initially screw-ori-

ented, they repel each other until the repulsion

is opposed by the self-stress (Fig. 12b). Conse-

quently, even in the absence of an externally
applied stress, the mobile segments are bowed at

equilibrium. (This is a reasonable result as bound-

aries composed of a single type of screw disloca-

tion have infinite energy and are inherently

unstable.)

In the initially edge-oriented case, at equilib-

rium the mobile segments lie on top of each other

and the dislocations stay ‘‘locked’’ together as they
bow under an applied load (Fig. 12a). However, if

h, the separation between the glide planes of the

edge structure, is sufficiently small, another locally

stable configuration is possible. The shear stress

generated by an edge dislocation changes sign as

one traverses a plane parallel to the slip plane. As a

result, two edge dislocations bowed to sufficiently

different extents will experience a repulsive force
between the apex of their bowed segments. This

can result in an ‘‘unlocked’’ configuration, sim-

ilar to the screw stack. Fig. 12c shows such an

Fig. 11. Peak energy loss for isolated 1 lm, edge and screw

sources driven with a 1.0 MPa oscillatory shear stress under

different bias stresses.
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unlocked edge stack at local equilibrium under a

4.0 MPa static biasing stress.
Fig. 13 shows the loss spectrum (measured per

dislocation) for isolated and stacked screw sources.

There is a slight drop in the peak energy loss per

dislocation based on expectations from an isolated

source. There is also a shift to higher frequencies.

At first glance, this unusual behavior is counter-

intuitive. The screw sources repel each other ef-

fectively applying a positive and negative bias

stress on each other (i.e. the stack is ‘‘self-bias-

ing’’). This would lead one to expect interacting

screw dislocations to soften with respect to an
isolated screw source, yielding an increased loss,

according to Eq. (22). However, the quasi-static

stress strain curve in Fig. 9 shows that the stacked

screw dislocations are marginally stiffer than iso-

lated screw sources. More importantly, the geom-

etry of the studied configuration has now two sets

of dislocation arms terminating at glide planes.

The line direction in each of the sources is such
that the stress field from the two two sets of arms

act in the same way. The arm stress field of screw

sources acts to stiffen them, and this extra arm

stress causes the slightly highter stiffness of the

interacting self-biased boundary. This increased

line length of the self-bowing segments accounts

for the extra shift in frequency of the peak loss.

Fig. 9 can also be used to understand the me-
chanical losses of the stacked edge dislocation

structures that appear in Figs. 14 and 15 (with

respect to an isolated edge Frank–Read source).

An interesting feature of the stress vs area curves

for the multidislocation structures is that they may

terminate before the gradient goes to zero, as one

dislocation may go super-critical before the other.

The increased stress topography on the glide plane

Fig. 12. Configurations of locked stacked edge sources (a),

stacked screw sources (b) and unlocked stacked edge sources

(c), all under a static bias stress.

Fig. 13. Loss spectra of unbiased isolated and stacked 1 lm
screw sources driven with 1.0 and 2.0 MPa stress amplitudes.
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of the stacked structures should act to soften the

edge dislocation structures. However, the elastic

interactions between the mobile segments must

also be considered. In the case of the locked edge

dislocations the elastic interaction between distant

parts of the two bowing dislocations is attractive.
The interaction between the part of the line in

vertical alignment is very small. This effectively

increases the far field contribution to the self-stress

of the bowed dislocation, and stiffens the bowed

dislocation.

The unlocked edge stack is self-biasing, like the

screw stack, but the bowing segments are self-bi-

ased to the stiff region of the stress strain curve.

Again there is a small shift in frequency attributed

to the drop in the effective drag, D. The stress area

curve of the unlocked edge sources display soft-

ening at around 4.0 MPa and so biasing an un-

locked stack causes the energy losses to rise above
those for a similarly biased isolated source. This

can be seen in Fig. 15.

Finally, it is noted that the values of h employed

here are characteristic of a �0.5� tilt boundary.

Hence it seems quite likely that modeling the re-

sponse of higher angle boundaries requires con-

sideration of the many dislocation problem.

6. Conclusions

The work presented here explores the disloca-

tion dynamics predicted by a front tracking algo-

rithm for dislocation dynamics. In particular, the

mechanical losses expected from applying an os-

cillatory load to various configurations of Frank–
Read sources are considered.

It is first demonstrated, by comparison with the

exact solution of the small stress amplitude limit,

that the dislocation dynamics code applied here

gives an excellent description of the mechanical

losses in the limit of large core cutoff. This test,

while not a test of general conditions, does provide

some confidence that the simulations are produc-
ing reasonable results. Bouyed by this confidence,

the dislocation dynamics code is then used to ex-

plore losses under more realistic conditions.

The current work considers two situations:

isolated Frank–Read sources, and stacked Frank–

Read sources. At high frequencies, the isolated

Frank–Read sources behaved as expected from the

Granato–L€uucke model for mechanical losses. The
sources display an increased maximum loss oc-

curing at a lower frequency than that predicted by

Granato–L€uucke theory. Adjusting the line tension
of the Granato–L€uucke model (which is effectively

the procedure one would apply in the analysis of

an experiment) can lead to better agreement be-

tween the model and the simulation for the am-

plitude of the losses, but the Granato–L€uucke
model still overestimates the frequency at which

one observes the maximum loss.

Fig. 14. Loss spectra for unbiased, locked, unlocked and iso-

lated 1 lm edge Frank–Read sources.

Fig. 15. Loss spectra for 4.0 MPa biased, locked, unlocked and

isolated 1 lm edge Frank–Read sources.
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Under an applied bias stress such that the am-

plitude of the bias stress and the oscillatory stress

exceeds the critical stress for operation of the

Frank–Read source, the frequency dependence of

the loss deviates substantially from a simple

Lorentzian shape. Instead, the former maximum in
the loss becomes a local maximum in the loss vs

frequency plot. Further, the application of a bias

stress can increase the losses associated with the

dislocation substantially. The deviation is clearly

evident in the dislocation hysteresis loops, which

switch from an elliptical shape to that resembling a

golf club. This deviation is particularly important

to experiment, as internal friction measurements
are often done under an applied bias load to in-

crease the signal.

It is also noted that in experimental situations,

the dislocations responsible for the losses are often

contained within dislocation boundaries. Hence, it

is reasonable to consider the effects of these

boundaries on the expected losses. As the starting

point for such an investigation, the current paper
considers the interaction between two Frank–

Read sources. It is shown that dislocation inter-

actions may alter substantially the losses expected

from the dislocations (as compared with the simple

sum of non-interacting dislocations).
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Appendix A

The self-stress of a dislocation is given by [18]

SðrÞ ¼ l
4p

I
line

ðb
�

�r0Þ 1
R
	 dl 0

�

þ l
4p

I
line

dl 0
�

	 ðb�r0Þ 1
R

 ðr0 � b� dl 0Þ

�ðr �r
 Ir2Þ R
ð1
 mÞ

�
; ðA:1Þ

where m is Poisson�s ratio, dl 0 ¼ nðr0Þjdl0j (where dl
is an incremental distance along the line) and

R ¼ jr0 
 rj. The resulting Peach–Koehler force felt
by the dislocation is

FselfðrÞ ¼ SðrÞ � bð Þ � nðrÞ: ðA:2Þ

Pinning the ends of the mobile dislocation segment

at the origin and r ¼ ðL; 0; 0Þ, and confining it to

glide with small amplitude oscillations on the z ¼ 0

plane, gives rðtÞ ¼ ðx; yðx; tÞ; 0Þ and allows the un-

known function yðx; tÞ to represented as a sine

Fourier series

yðx; tÞ ¼
X1
n¼1
n odd

anðtÞ sin
xnp
L

� 	
: ðA:3Þ

Taylor expanding the self-glide force in the coef-

ficients fang about the unbowed configuration and
only retaining terms up to first order in fang gives
a sum of force distribution functions for each of

the vibrational modes

FselfðrÞ �
X1
n¼1
n odd

o

oan
SðrÞ � bð Þð � nðrÞÞjfang¼0anðtÞ

¼
X1
n¼1
n odd

anðtÞfnðxÞ: ðA:4Þ

The force distribution functions are given by the

line integral

fnðxÞ ¼
Z x
q

0

b2yl

4p

npðx0 
 xÞ cos nx0p
L

� 	
Ljx0 
 xj3

0
@

þ
sin nxp

L

� �

 sin nx0p

L

� 	
jx0 
 xj3 1
 mð Þ

1
Adx0

þ
Z L

xþq

b2yl

4p

npðx0 
 xÞ cos nx0p
L

� 	
Ljx0 
 xj3

0
@

þ
sin nxp

L

� �

 sin nx0p

L

� 	
jx0 
 xj3 1
 mð Þ

1
Adx0: ðA:5Þ

(If the point in question is nearer to a corner than

q, only the appropriate term is retained.) For a

general point, integrating yields the expression
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fnðxÞ ¼ s
jL
2x~xx

1ð
 


 2mÞ 
 sinðjxÞ L
2 
 2Lxþ 2x2

2~xx2x2

!

þ s
sinðjxÞ

q2
1ð 
 cosðjqÞ


 jqð1
 2mÞ sinðjqÞÞ þ sj2ð1
 2mÞ

� cosðjxÞ siðjxÞ 
 siðj~xxÞ
2

 !

 sj2ð1
 2mÞ

� sinðjxÞ ciðj~xxÞ þ ciðjxÞ
2

 

 ciðjqÞ

!
;

ðA:6Þ

where

~xx ¼ L
 x; ðA:7Þ

j ¼ np
L
; ðA:8Þ

s ¼
b2yl

4p 1
 mð Þ ; ðA:9Þ

and siðxÞ and ciðxÞ are the sine and cosine integrals
of x respectively.
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