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ABSTRACT

The mechanical losses due to the bowing of isolated Frank-Read sources under appli-
cation of periodic loads is studied within a continuum simulation of dislocation dynamics.
The dislocations are modelled within isotropic elasticity theory and assumed to be in the
overdamped limit. Dislocation radiation effects are neglected. The mechanical losses are
studied as a function of bias stress, amplitude of the periodic stress and frequency. The
frequencies studied lie between 10 KHz and 1 MHz. Under high stresses applied at low
frequencies, a deviation from the expected Lorentzian resonance shape is observed. The
physical origins of this deviation are discussed.

INTRODUCTION

The motion of dislocations under periodic loads is known to contribute to losses mea-
sured during internal friction experiments [1]. Therefore, under ideal circumstances, in-
ternal friction experiments offer a means to explore the dynamics of dislocations. For
example, in materials with a large Peierls barrier, one may deduce the dislocation kink
pair formation energy [2].

However, other microscopic mechanisms, for example atomic scale diffusion, max"' lead
to mechanical losses. Proper interpretation of internal friction experiments, therefore,
requires a detailed theory-based understanding of the phenomenon in question. Identi-
fying the proper theory, then, is a central to efforts aimed at advancing applications of
mechanical spectroscopy techniques for studies of dislocation dynamics.

For describing materials with a small Peierls barrier, such as aluminium, the model
most often applied is that of a vibrating string, explored originally within this context
bv Granato and Liicke [3]. A straight elastic string is pinned at both ends, the resonant
frequencies of the string are calculated, and the losses associated with the resonances
summed to yield a final expression for the total loss. Implicit in this model is the assump-
tion that the displacement of the string is small in comparison to its length, and that the
amplitudes of any residual or bias stresses are zero.

To address the large stress amplitude regime, Tyapunina and Blagoveshchenskii[4]
applied a numerical approach to study large displacements of an elastic string governed by
viscous dynamics. They demonstrated that the internal friction expected from a bowing
Frank-Read source displays both frequency and stress amplitude dependences. However,
their approach assumed a constant, isotropic line tension, and hence did not represent
fully the change in dislocation self stress with the configuration of the dislocation. Further,
their work did not consider the effects of a static bias stress on the expected loss.
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In the current work, simulations of dislocation dynamics are used to explore the me-
chanical losses expected from the simultaneous application of static and periodic loads
to a Frank-Read source. The losses are studied as a function of periodic stress ampli-
tude, bias stress and frequency. The results are compared with the expectations of the
Granato-Liicke formalism. In particular, it is noted that under common circumstances
one may observe significant deviations from the form expected based on the elastic string
model.

MODEL

The dislocations are assumed to be governed by isotropic elasticity theory and embed-
ded in an infinite and homogeneous medium. The dynamics are assumed overdamped, so
that the dislocation mass may be neglected. The drag coefficient is assumed independent
of velocity and isotropic with respect to the orientation of the dislocation.

A previously developed simulation code [5] incorporating these features is applied to
calculate the dynamic response of the dislocations. The simulations treat the dislocations
within a continuum limit, and reflect the full self-stress of the dislocations. Elastic param-
eters consistent with Aluminium, i.e.with the magnitude of the Burgers vector b = 2.86
A , the shear modulus is taken to be p = 26.5 GPa, and the drag coefficient is taken
as B = 0.08 N s m- 2. The dislocation is treated as if undissociated. The small scale
cutoff procedure employed by Hirth and Lothe [6] is applied, and the cutoff is chosen to
be p = 10 A.

The dislocation is decomposed into segments extending between points. The points
are indexed by the subscript i and the vector fii indicates the glide direction normal to
the dislocation line direction at point i. The velocity of the ith point is given by

Oui_ (((oi. b) x )" fii)fij(1)

at B
Where ýj and a'i are the line direction and stress at the ith point, b is the burgers vector.
The stress o', reflects the contributions from the applied stress as well as the self-stresses
of the dislocation. Radiated elastic waves are not considered.

Eqs. (1) are integrated using a fourth order Runge-Kutta integration scheme, as out-
lined in reference [5], with the exception that additional points are now inserted along a
fitted spline, instead of inserting points along a fitted circle.

SIMULATIONS

The simulations consider dislocation configurations similar to that shown in Fig. 1.
The losses associated with the application of the periodic stress are calculated as follows.
The periodic and bias stresses are applied to the dislocation, and the hysteresis is recorded.
The simulations are run until "steady-state" hysteresis is observed. This condition is
defined practically as the point at which the area swept out over a complete cycle remains
fixed from cycle to cycle (within the noise limits of the simulatiobs). Once "steady-state"
is attained, the hysteresis is averaged over eight cycles and the energy loss from the
dislocation is calculated according to

ZXW cx ~ a,(t) dE ) Cx (I-+7rL oL, cos(wot)b-OAdt) , (2)/ \J~ at
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Figure 1: (a) A typical configuration of the Frank-Read Sources. Note that the arms carry on
out of the diagram and the loop is closed on a parallel plane 10 prm above the slip plane. (b)
The evolution of the hysteresis loop as the frequency drops through the peak loss frequency for
a 1 jum edge oriented source oabja8 = 4 MPa and a, = 6.5 MPa.

where r is a time in the "steady state" regime, w is the angular frequency, and ua (t) is the
applied stress at time t. The time dependent strain from the motion of this dislocation,
6, is taken to be proportional to A(t), the area swept out by the dislocation at time t. In
short, AW is taken to be proportional to the area of the hysteresis loop (Fig. 1). The
applied stress is given by ua(t) = aba. + or coswt with obiaa a static applied stress, and
o,., the amplitude of the periodic component of the stress. The simulations are run at
a number of angular driving frequencies in the range from 10KHz to 1MHz. A peak is
seen in the energy absorption as function of frequency. This absorption peak is studied
for a variety of different stress conditions for both screw and edge dislocation sources of
varying lengths. Typical results are depicted in Fig. 2.

DISCUSSION

The data in Fig. 2 represent the losses calculated from a 1 Am length source. For
low bias stresses and high frequencies, the peak resembles the Lorentzian shape expected
from a 1-dimensional linear, overdamped oscillator:

AW = wDa2 )
k2 + (wD)2  (3)

Here, D is a drag coefficient for the oscillator, and k represents the spring constant.
From the form of Eq. (3), it is apparent that if one increases the value of k, the peak
is shifted to higher frequencies, and the maximum loss is reduced. Increasing the drag
coefficient D simply translates the entire curve to lower frequencies. Eq. (3) thus serves
as a simple model for the losses observed in the more complicated dislocation problem,
and the features evident in Fig. 2 are discussed in terms of the parameters k and D.

stiffness vs. length

Panel (b) of Fig. 3 displays a scaled plot of the area of a dislocation loop vs. the applied,
subcritical stress. One expects this area to scale as L2 , where L is the length of the source.
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Figure 2: The mechanical loss from 1ptm edge and screw sources (a) under 4 MPa bias stresses
with differing a,, and (b) with oa, = 1 MPa for the indicated values of crbias. Panel (b) also shows

the loss predicted from Granato-Liicke theory. Note that the predictions of Granato-Liicke and
the current theory are similar when oab = 0 and for low values of ok.,.
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Figure 3: (a) The normalized loss for 4.0 MPa biased, ljm edge sources subject to different
driving stresses with the change in peak. Loss with stress amplitude shown inset. (b) The sialed
stress-area curve for quasi-static bowing of different length edge sources.

Similarly, one expects that the critical stress to set the relevant stress scale. The critical
stress scales as (LI log CL)- 1 with C a constant. Fitting to the results of reference [5]
one finds that C z 1.6 x 109. The implication is that one might scale the stress axis by
the factor L/ log " and the area axis by a factor of L 2 and produce one scaled plot of
applied stress as a function of area swept out. It turns out that better data collapse is
obtained for the choice C = 10/p. The plot so obtained is contained in panel (b) of Fig.
3. The data collapse is excellent, though the precise origin of the value of C which gives
the collapse is not well understood.

The slope of the stress vs. area curve, then, represents the area dependent stiffness,
k. It is apparent that at higher scaled stresses, the stiffness of the loops is reduced, and
eventually, near a scaled stress of 1, the stiffness becomes identically zero.
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edge vs screw

Fig. 2 indicates that the losses associated with initially screw oriented segments are lower
than their edge oriented counterparts. This is a consequence of the elastic strain energy
difference between the screw and edge segments. The elastic strain energy of a screw
dislocation is reduced relative to the edge dislocation by a factor of 1 - v. Hence bowing
the screw dislocation, so that part of it assumes edge character, requires more stress than
bowing the edge segment to a partial screw orientation. The net result is that for the
screw oriented segments, the effective value of k is larger.

stress amplitude

Fig. 2 also indicates that as the amplitude of the periodic stress is increased, the mag-
nitude of the loss increases as well. One expects the losses to scale with the square of
the periodic stress amplitude, and this behavior is observed (Fig. 3). The shift in peak
frequency with increasing amplitude apparent in Fig. 2 stems from the softening of the
dislocation line tension as the dislocation bows. The effective stiffness, k is thus amplitude
dependent.

bias stress

For large bias stresses, the form of the
loss curve can differ dramatically from the
simple Lorentzian shape (Figs. 2 and 3).
Specifically, the loss reveals a rapid rise at
low frequencies. The physical origins of this
rise are clear. Consider the situation in which
the sum of or, and Ubsas exceeds the critical
stress necessary to operate the Frank-Read
source. Then, as w --+ 0, the dislocation
behaves as an overstressed source. Earlier
work has demonstrated that there is a stress
dependent characteristic time to operate a
Frank-Read source, and that this time in-
creases rapidly as the critical stress is ap-
proached from above [5]. Then, the recipro-
cal of this characteristic time sets a charac-
teristic frequency for losses during internal
friction. Frequencies much higher than this
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Figure 4: Area vs. time curves for a, = 2.0
MPa (dashed line) and a, = 6.5 MPa (solid
line) with Obias = 4.-0 MPa. The large am-
plitude area shows marked deviations from a
simple cosine form.

characteristic frequency will yield small losses. As the characteristic frequency is ap-
proached from above, the losses will begin to increase as the dislocation is moved back
and forth through the critical configuration. At even lower frequencies, the loss per cycle
is not constant, as the dislocation motion is no longer periodic.

Within the model summarized in Eq. (3), the picture is as follows. For high fre-
quencies, the displacement due to the periodic stress is small, and the stiffness of the
dislocation is determined by the local slope of the stress vs. area curve shown in Fig. 3.
However, as the amplitude of the periodic stress is increased, the effective stiffness of the
dislocation can be driven towards the value zero, as the dislocation oscillates about the
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maximum shown in panel (b) of Fig. 3. This leads to the rise in losses at low frequencies.
Based on this simple argument, one would expect to observe larger shifts in the peak fre-
quency than those observed. This lack of large shift is explained as an overall decrease in
the effective drag coefficient D which partially cancels the shift arising from the decrease
in stiffness.

The effects of the U'bias and a, are readily observable in plots of area swept out vs.
time for the driven dislocation. Fig. 4 displays two area vs. time curves, one for a large
amplitude oscillatory stress, and a second for a small amplitude. The small amplitude
curve is described well by a simple cosine. The large amplitude curve, in contrast, shows
large deviations from the simple cosine form.

CONCLUSIONS

In conclusion, dislocation dynamics simulations are used to investigate the amplitude
and bias stress dependence of losses due to oscillating dislocations. A simple overdamped
oscillator model is used characterize the response of the dislocation to time dependent
loads. The amplitude dependence of the losses scales roughly as the amplitude of the
oscillatory component of the stress squared. The results are found to be in good agreement
with expectations based on the theory of Granato and Liicke for the range of stresses in
which that theory is likely to apply.

A striking feature of the losses is their frequency dependence. For large frequencies and
small bias stresses, the frequency dependence displays a single peak. However, for larger
bias stresses, and lower frequencies, the loss spectrum includes the expected peak, but
also reveals a divergence at lower frequencies. This divergence arises from the fact that
the effective stiffness goes to zero near the critical stress for operation of a Frank-Read
source.
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