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Due to their unique boundary conditions, nanowire heterostructures may exhibit defect-free
interfaces even for systems with large lattice mismatch. Heteroepitaxial material integration is
limited by lattice mismatches in planar systems, but we use a variational approach to show that
nanowire heterostructures are more effective at relieving mismatch strain coherently. This is an
equilibrium model based on the Matthews critical thickness in which the lattice mismatch strain is
shared by the nanowire overlayer and underlayer, and could as well be partially accomodated by the
introduction of a pair of misfit dislocations. The model is highly portable to other nanowire material
systems and can be used to estimate critical feature sizes. We find that the critical radius of this
system is roughly an order of magnitude larger than the critical thickness of the corresponding thin
film/substrate material system. Finite element analysis is used to assess some aspects of the model;
in particular, to show that the variational approach describes well the decay of the strain energy
density away from the interface. @005 American Institute of Physics
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I. INTRODUCTION quantum-dot geometriepn andpnpjunctions, hanowire su-
perlattices, light-emitting devices, and thermoelectric de-
A better understanding of heteroepitaxial growth pro-vices. Other nanotube and nanowire interfaces have been
cesses and interfacial defect formation has resulted in imfabricated using a variety of techniqu&s® Characterization
provements to the quality of two-dimensional heteroepitaxiabf the electrical properties of these interfaces has included
systems. In semiconductor heteroepitaxy, this has enablgshotoluminescence spece[ra and current-voltage
developments in optoelectronic devices, light-emitting di-analysis>®'***Remarkably, we have not been able to find
odes, laser diodes, transistors, quantum-cascade lasers, afstailed analysis of the atomic structure of the interface,
many other devices. Yet, heteroepitaxial integration of somgvhich we attribute to the relative recency in the fabrication
semiconductor systems remains inaccessible due to large lasf controlled, sharp interface®.g., see Bjorlet al?). Yet,
tice mismatches between the materials of interest. A largenis is sure to follow soon as nanowire and nanotube inter-
lattice mismatch results in poor-quality interfaces with highfaces work their way into the laboratory.
misfit dislocation density; these dislocations influence the  An important manner in which nanowire heterostruc-
electrical behavior in several ways. For instance, they areures differ from their planar counterparts is by their elastic
preferred sites for impurity atoms, high-diffusivity paths for boundary conditions: while a thin film is constrained later-
dopants, and nonradiative recombination centers. The Si/Gally during growth, a nanowire can relieve strain energy via
heteroepitaxial system is one example where use of the irlateral relaxation. We expect that one-dimensional systems
terface as an active device component has remained largetyan be grown defect-free more readily than their two-
out of reach due to the large 4% lattice mismatch. In thedimensional counterparts, and thus they afford the opportu-
InAs/InP system, only a few atomic layers can be grownnity to integrate classes of materials that, due to large mis-
before islands or misfit dislocations form. match, are not realizable in planar systems. The goal of this
The recent demonstrations of coherent, lattice-work is to explore this possibility quantitatively. The devel-
mismatched nanowire semiconductor heterostrudtﬁdﬂy opment of a simple model that describes coherency limits in
the vapor-liquid-solid synthesis mechank?nepresent the strained heterostructured nanowires is then not only aca-
first foray into a distinct realm of heterojunction functional- demically interesting, but it also can be useful to the band
ity and performance. These longitudinally heterostructuredtructure and device engineer.
nanowires enable band gap engineering in one-dimensional Indeed, recently many scientists have noted the potential
structures, with potential applications towards unigueuses of nanostructures as a means of improving interface
quality in heteroepitaxial systemg:**Almost ten years ago,

AElectronic mail: elf@berkeley.edu Luryi and Suhit® formulated expressions for the critical
PElectronic mail: tsands@ecn.purdue.edu thickness for growth of strained heterolayers that include the
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Unbonded: note the underlayer and the overlayer, respectiv@lye lat-
Ru 0:00:0 Ro tice mismatch between the overlayer and the underlayer is
denoted byf, wheref=0, and
underlayer overlayer
Bonded: R,=(1-HR,. (1)
Ro D:BR° > 2 The interface is created by bonding the two semi-infinite

underlayer overlayer nanowires together at=0, as illustrated in Fig. 1. The over-
o misit layer, occupying=0, 0<r,<R,, is “stretched” and the un-
poer dslocation s derlayer, occupying=<0, O<r, <R, is “squeezed” so that

the two nanowire cross sections are mapped onto each other
at the interface. The mapping is coherent if misfit disloca-

FIG. 1. Schematic of heterostructured nanowire, before and after inten‘aciayon,S do not form_’ and Semlcqh?rem OtherWISe_' The effectlve
bonding. The misfit dislocation geometry considered here is illustrated asadiusRy at the interface satisfid’, <R.s<R,; its precise
well. value depends on the relative values of the ela@dtamé
parameters that describe the nanowings: wy, Ao, and u,.
IFar away from the interface in both the overlayer and under-

yer, the nanowires can relax, and the radii apprdacand

, respectively(In the analysis that follows, we will char-

effects of the finite size of the substrate; they show that fo
small sizes, the strain energy is much reduced as a result

lateral relaxation away from the interface. This, idea ha:

been extended to that of nanoheteroepitig, which epil- acterize this relaxation by a relaxation distancave assume
ayers are created by coalescense of an array of nanoscAlét both the .unde_rlayer and overlayer are long with respect
islands epitaxially grown on lithographically patterned sub-© the requatlon @stanc;e). : -

strates. It is observed that misfit dislocation densities are re- At a given lattice mismatch, if the radii R, andR, are

duced using this approach. Theoretical modeling of the prin§ma”’ the circular cross section of the overlayer will be co-

ciples of nanoheteroepitaxy is detailed in Zubia andherently mapped onto that of the underlayer without forma-
Herseel’ tion of misfit dislocations. The system is then elastically

As the theoretical developments in two-dimensional hetStrained, but remains coherent at the interface. Ultimately, as

eroepitaxy have been useful in guiding interface engineering[,he ragu increase, the system loses |ts.pu.rely one-
we believe that the same will be true for one—dimensionap'mens'onal nature, and relaxation of the strain fields away
systems. Thus, we present here a fundamental model, in trLg}om the interface is inhibited. For large lattice misfit or for
spirit of the Matthews modéf to predict the critical radius particularly largeR, andR,, misfit dislocations may arise to

of a heterostructured nanowire system. Although the eﬁectgccolmodate d.the*mFlsmatc<h ;e,trz;m.. This’ the.r”ebls ahcrltlcal
of lateral relaxation resulting from finite-size effects haveOVerayer ra uR,. ForR,<R,, the interface will be coher-

been explored previousf)?’” here we describe coherency ent and the formation of misfit dislocations is not energeti-
limits specifically for the one-dimensional nanowire hetero-Cally favored; otherwise foR,> R, misfit dislocations can

structure(other models have been geared towards growth Oprm to Te"e"e the mlsrpatch stral_n_. The g_oal of this wqu IS
thin films on patterned substrates or on the inclusion oito des_cnbe_a model fdR(f), the critical radius as a function
finite-size effects on the strain fields in islandk is quite of Ia1t_tr|]cedm|sr?atch. £ thi ical radi del hi
likely that further refinements to our model will be made in e development of this critical radius model roughly

the future, as greater experimental understanding of nan(p_arallels the Matthews critical thickness maddbr hetero-

wire interfacial defects is gained. However, with this initial structured thin-films. For a given mismatétand overlayer

attempt, we obtain a glimpse into the nature of the One_radiusRO, the total strain energy in a coherent nanowire het-

dimensional heterostructure. Finite element analysis is usegfostructure is compared to the total enefmgsidual strain

to support the variational framework that is developed. MosENeray and dlISIOEatlg'nlenehggf a dislocated nﬁmow[re heft-h
importantly, we demonstrate that, due to lateral relaxation a?rosltrupture. r:ct € dis ocaéle deitemh’ a dsn;a p'ortlon Oh'lt €
the boundaries, the one-dimensional heterostructure does oLE—ta mismatchf is accomodated by the dislocations, while

fer advantages over conventional two-dimensional interface Ie tr_em?m_de_r(trk])e trhe?rl]dual (;mslmatch 'Sd accolmodatls d by I
and is an avenue worth pursuing. elastic strain in bo e underlayer and overlayer. For sma

R,, the coherent system has a lower energy; for l&gehe
dislocated system has a lower energy. The critical radius at
which the transition occursR, is the radius at which the
Il. EQUILIBRIUM MODEL FORMULATION total energy for both systems is the same.
In this analysis, as with the Matthews model for epitaxial
A schematic of the heterostructured nanowire is showrthin films, interactions between the dislocations and mis-
in Fig. 1. The nanowire is oriented along tlzeaxis and match strain fields are not considered. The total strain energy
comprises an elastically isotropic underlayer and an elastis considered to be a superposition of the strain energy aris-
cally isotropic overlayer, with an interface at0. The un- ing independently from the residual mismatch and from the
strained(i.e., before interfacial bondingadii of the under- dislocations themselves. This analysis is accurate only when
layer and overlayer are denotd®], and R,, respectively. dislocations account for only a small portion of the entire
(Here and hereafter, subscripts and supersctigado de-  misfit strain(and thus is valid when determining the critical
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size at which dislocations are first introdugetiVe restrict  determine the exact solutions to the equations of elasticity
our analysis below to the introduction of only the first pair of describing the displacement, stress, and strain fields in the
misfit dislocations to avoid thigand othey complications. vicinity of the interface. These solutions are axially symmet-
ric. They must as well meet the criterion that, when
dislocation-free, the two cross sectionzal arecoherently

We first wish to determine an expression for the elastionapped onto each other, so that, using a cylindrical coordi-
strain energy accomodated by the overlayer and the undenpate system, the displacements of the underlayer and over-
layer for a coherent system. Ideally, it should be possible tdayer satisfy

A. Coherent nanowire heterostructure

ud(ry(1-f),z=0)=uy(r,,z=0)

o<r,<R, 2
ru(l—f)+U?(ru(l—f),z=0)=ru+ut’(ru,z=0)} v

whereu? denotes the radial displacements in the overlayer, o -z

W denotes the displacements in the overlayar’ denotes U,(r,2) = (Cro + DRyJex 2aR. |’
the radial displacements in the underlayer, ajidenotes the

z displacements in the underlayer.

Also, the stress tensor components and o,, are con- U(r,2) = (C(1 - f)r,+D(1 - f)Ru)exp{;}
tinuous across the interface so that 20(1-F)R,
ory(1—1),2=0) = 0i(r,z=0) ~(Cr.+D p[;] 5
iz(u o ff(u _ 0<r,<R, (Cru+ DRI 5 T R, ®
op(ry(1=1),z=0) = 07,(ry,, z=0)

(3) With this choice of radial displacements, the overlayer is

uniformly stretched and the underlayer is uniformly
In addition to satisfying the constraints in Eq8) and(3),  squeezed. The fields) and ! are incorporated to allow for
the solutions must, as well, leave the free lateral surfacefe|axation in thez direction so that the planes of constant

traction-free: are not held rigid. We assume that the fields decay exponen-
62 (Ry(1~1),2) =0 tially with distance from the interface, w!th decay parameter
i ' 0; a>0, to reflect the strain energy relaxation that we expect to

o (R(1-1),2=0 see in nanowires. Of course, these displacement fields are not

self-equilibrated nor do they satisfy the free-surface tractions
04 (R,2) =0 on the lateral surface@n the minimum potential energy ap-
o (R,2) =0 (4) proach, they need npthowever _the dimensic_mless varia-
e tional parameter8, C, D, and« will be determined by en-
Determining the exact solutions should be possible withergy minimization to best reflect the exact displacement
a stress function approach or by using complex variabldields. The displacements and u} in the underlayer are
methods, but here we proceed instead by using a variationalkpressed in terms of parametdsC, and D so that the
approach(principle of minimum potential energyo obtain  conditions in Eq(2) are satisfied to first ordeiNote that in
an expression for the strain energy in the coherent heterahis formulation, we are neglecting the stress continuity con-
structure. An advantage of this approach is that the criticatraints of Eq.(3)]. B, where O0<B<f, indicates the degree
radius model becomes a simple tool for the nanodevice erof strain partitioning between the overlayer and the under-
gineer to predict the formation of interfacial defects. layer: for the case that the elastic parameters of the overlayer
We allow relaxation oboththe underlayer and the over- and underlayetboth assumed to be isotropiare identical,
layer, and assume the following relationship for the displacewe expectB=f/2; so that the overlayefin tension con-
ment fields: forms to the underlayefin compressionto the same extent
that the underlayer conforms to the overlayer.
__] The stresses and strains in the overlayer can be deter-
2aR, |’ mined. According to Hookean constitutive behavier;
=Cijaeq, Wwhere for isotropic materials Cjy; =\ dq
z +u(6 5 + 6 9y) (summation convention impliedThus we
2a(1 - f)Ru:| have from kinematics that

z o _ —z
~(B-f)ry exp{m], €= Bexp{ zaRo],
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B exn ——
600 2aR, |’
Cr,+D -z
- (CrotDRy |
2R« 2aR,

-Br,+C -z
e =—" Rea exp[ }
4R, 2aR,

and from the constitutive relations that

NmO
I

o _ 4()\0 + /‘LO)BRDa - )\o(cro+ DRO) eXp|: —-Z

= 2R, 2aR, |
o _ 400+ 110 BRy@ = No(Cro + DRy) p[ -z

Too~ 2R« ex 2aR, |’
o _ MoBRy@ = (Ao + 2u4)(Cry + DRy) p[ -z

22~ 2R XM 2aR,
o _ Mo(=Bry+ 2CRya) -z

o= Bl 2R o =2 |

Similar expressions are obtained for the underlayer:

z
e B

V4
w=(B- f)exp[ 2a(1 —f)RJ ’

. _ (Cry+DRy) p[ z }
= 21 -HRa P 2a(1-HR, |’

,_ (B=Hr,+2C(1-HRa p[ z }
€2~ A1-fRa N 2a(1-HR,

and

uo_ 4(N\o + uo)(B—)(1 - )R, + Ao(Cr, + DR)
g,

m- ZRua’

e
N 20(1-HR, |’

u _ A0+ po)(B- (A -F)Ra+Ay(Cr, + DR

To0= 2R,

o g
N 2a(1-NR, |’

(6)

(8
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o _ Mo(B=D(AL-HRa+(\g+2u)(Cr,+ DR)

Tz 2(1-HR,a
z
exp[ 2a(1- f)Ru] |
o - to((B=Dry+ 2C(1 = HRya) Xp{ z ]
rz 2R(1-fa 2a(1-HR, |’
9

On the interfacial plane, the strains satisfy
|ene| + lere| = €gel + gl = ] (10)

to first order.

Let e,=g,(r, z)—za * be the strain energy density in
the overlayer ance, eu(r 2)= 20“ be the strain energy
density in the underlayer. The total strain energy in the over-
layer E, and in the underlayeE, can be obtained by inte-
gration:

2
ff f ey(ry,2)rdr,dédz

= —R"[xo(sc2 +8C(D - 4Ba) + 6(D - 4Ba)?)

+ uo(— 16BCa + B%(3 + 96a2) + 2(3C(1 + 4a?)
+8CD + 6D?))] (11)

and

27
Jffeu(ru,z)r dr,dedz

ﬁ[xu@cz +8C(D+4(B-f)(1-f)a)

+6(D+4(B-f)(1-f)a)? + u,(16C(B - f)
X(1-fla+(B-1)%(3+ 961 -f)%a?)
+2(8CD + 6D? + 3C%(1 + 41 - )%2a?))]. (12)
The total elastic energl,=E,+E, must then be minimized
with respect to the parametess B, C, andD. We can solve

for the energy-minimizing decay constast in terms of the
other parameters by solvingf da(E.) =0, which gives

o = (6B%u + 3f2u + 3fBu(- 2 +B(- 2 +)(2 + (- 2 +f)f)) + (3C?+ 8CD + 6D?) (2 + f(- 2 + ) (2 + (- 2 + F))) (A

+2)YH2\6(1 ~ F)\AF(F = 2B)(N + o) + (2 + F(= 2+ 1)) (uC? + 4BX(\ + ). (13

Here and hereafter, we assume thgtr,=\ and u,=u,=up. It is possible to carry through the analysis without this
assumption, but the algebra becomes substantially more tedious while not qualitatively altering the(Fesuttarticularly
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large elastic mismatches, it may be desirable as well to consider distinct relaxation pararpetetsy, for the overlayer and
underlayey. Substitution of Eq(13) into the expression foE, gives

Rs

T 121-1)
+BV(4F2—8BR(N + ) + (2 + (= 2 +1))(C2u + 4B2(\ + w))
X V(N +2u)(2 + (=2 +)(2 +f(= 2 +1)))(3C2 + 8CD + 6D?)). (14)

Eq (4f(B(3 +f(- 3+1)) - 1)(3DA + C(2\ + w))

Of course, this must be minimized with respect to the parametry is likely to permit pure edge dislocations due to the
etersB, C, andD, which set the topology of the interface. We available slip plane that is coincident with the interface and
do this minimization numerically, and denote the energy-intersecting the nanowire surface. Thus, we assume pure
minimizing parameters aB", C", andD", corresponding to edge dislocations in this model.
the elastic energE*e,, so that We denote the number of dislocation pairs lpysuch
* _ thatn=0 corresponds to a completely coherent system, and
Eei= Eelp=p" c=c* p=0"- (15) n=1 corres Pt - .
= ponds to a system containing one pair of perpen
We show in Sec. IV via finite element analysis that thisdicular edge dislocations. As the formation of the first dislo-
provides a good estimate for the strain energy in the heterg=ation is the critical event for a semiconductor material, we

structure(overestimates the strain energy by approximatelyare concerned with the transition from the0 to then=1
15%. configuration. If we denote the Burger’s vector for each mis-

fit dislocation in the overlayer ds (so that for the two dis-

locations we havd51:b3< and 52:b§/), then the residual ra-

dial misfit strain(that is, the strain not accomodated by the
It is difficult to determinea priori the favored misfit dislocation is

dislocation configuration in a heterostructured nanowire. The

Matthews model for planar thin films more easily accomo-  |f | =|f| - |ej =|f| - | == | . (16)

dates cubic systems of rectangular cross section, where the 2R,

introduction of a perpendicular pair of misfit dislocations \ye imit our analysis to &b<2R,f so that the dislocation
uniformly alters the residual lattice mismatch in both the ~5nnot overcompensate for the mismatch stfain

andy directions. Misfit dislocations in cubic thin-film het- The strain energy per unit length of an edge dislocation
erostructures are often observed to arise in this manner, g Burger’s vectorb in an infinite medium is given by

the model is well justified for those systems. As far as we

know, misfit dislocations have not yet been observed in W _ b* u(\ + ) <R_B>
nanowire heterostructures. In nanowires, as in thin films, the L~ 27 (\ + 2u) b/’

most likely dislocation configuration should depend on the

crystal structure and orientation. For convenience, we willVNereR s the outer cutoff distance for the strain field ghd
study the formation of a pair of misfit dislocations as illus- IS the core energy factor introduced to accomodate the non-
trated in Fig. 1. This is not the first time that such a geometryinearities near the dislocation coteFrom this, we assume

has been considered: for instance, see CaBféfayho used ~that the strain energy arising from perpendicular disloca-

a similar geometry to consider misfit dislocations in islandsion pairs(n=0 orn=1) in the overlayer may be described

It is important to note that this is not necessarily the favored®Y:

dislocation configuration. For instance, in systems that have ~ b% po(No+ o) . [ Ry

three-or sixfold crystal symmetry along the wire axis, a per-  Egisi= 2”(2Ro)2—)\+—2 In o )

pendicular pair is unlikely. The first dislocation in GaN, for T RoT o

instance, might be an edge partial, since the stacking faulishere we have taken the radius of the overlayer as the cutoff

energy is low. However, the configuration that we have sefor the strain fields. Because we are accounting for the free

lected makes the analysis amenable to a simple critical radiusurface only by introducing an outer cutoff for the strain

model. fields, Eq.(18) overestimates somewhat the strain energy of
Misfit dislocations in the heterostructured nanowire systhe dislocation pair. This may, to some degree, offset the

tem introduce both a core energy and a strain energy. leffects of the overestimate to the residual strain energy.

planar heterostructured systems with face-centered-cubic lat-

tice structures if111} or {100 orientation, misfit disloca-

tions are often mtroducgd from the surface via {h&l} glide C. Critical radius

planes. These dislocations have both edge and screw compo-

nents, but only the edge component of the dislocation re- For a system containing=(0,1) dislocation pairs, the

duces misfit strain. In nanowire heterostructures, the geontetal excess energfresidual elastic strain energy and dislo-

B. Energy of misfit dislocations

nb

17)

(18)
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X Ry=100nm
10 f=0.01

e coherent (n=0)
----- dislocated (n=1)

Total Strain Energy E,, (103 eV)

wm  coherent (n=0)
..... dislocated (n=1)

Total Strain Energy Ey, (103 ev)

-’
-
-’
-’
-

10 20 30 40 50 60 70 0.005 0.01 0.015 0.02 0.025 0.03

underlayer radius Ry, Lattice Mismatch f

FIG. 2. EnergyE,, n=(0,1), vs underlayer radiug, for nanowire hetero- FIG. 3. _Energ)En, n=(0, 1)_, vs lattice mismatclhi for nanowire heterostruc-
structures with lattice mismatch=0.01,0.02,0.038=4, b=0.23 nm,), tures with underlayer radiug,=25,50,100 nmgB=4, b=0.23 nm,A;=\
=\,=60 GPa, ang,=,=60 GPa. =60 GPa, andk,=u,=60 GPa.

cation energyis obtained by combining Eg$15) and (18),
noting that now in Eq(15), f — f,.sand substituting Eq.16)
for fes

rameters typical of semiconducting material8=4, b
=0.23 nm,\,=\,=60 GPa, angk,=u,=60 GPa.

In Fig. 2, the solid line corresponds to the energy of a
E,=E, +Elg. (19)  coherent systenno dislocations while the dashed line de-

The residual mismatchis used instead of as now only a picts th.e energy of a system with one dislo.cz?\tion pair. In all
portion of the total mismatch is accomodated “coherently” Cases illustratedf=0.01,0.02,0.08 for sufficiently small

(for the completely coherent casfe,=f; when a dislocation Ru the coherent structure has lower energy. HoweveRas

is presentf . represents the residual mismatch that must bdncreases, the mismatch strain energy grows. Eventually, it
accomodatex becomes favorable to reduce the mismatch strain at the cost

We can use Eq19) to compare energies of systems thatof introducing a misfit dislocation. The critical radii at which
are coherent or dislocated. The critical radRsis deter- this occurs is, according to Fig. R,~60,25,15 nm, re-
mined by settindg=,=E, and numerically solving foR,. This  spectively, forf=0.01,0.02,0.03. As expectel, decreases
is the nanowire analog to the transcendental expression olyith increasing mismatch. By comparison, the critical
tained using a total energy approach to critical thicknesses ifhickness of the same material system in thin-film geometry
thin f|Ims. Many such thm_—fllm equations have bgen obtzzmn_eclS d ~2.86,1.07,0.55 nm forf=0.01,0.02,0.03, respec-
by various authors, we cite here the one dest_:nbed by*Nix tively, according to Eq(20). As a rough estimate, it appears
because it most closely parallels our formulation: . . . - .

that for a given lattice mismatch the critical radius of the
. b In('g—(f> (20) nanowire heterostructure is approximately an order of mag-
8nf(1+v) b/’ nitude (or more larger than the critical thickness of the
whered" is the critical thickness andis the Poisson is ratio equwglent planar heteroep|taX|aI.system.
for the thin film. Figure 3 shows the total strain energy, n=(0,1) ver-

As a final note, in a more accurate formulation of the SUS lattice mismatch for nanowire heterostructures with un-
critical thickness mode(both this modehs well asthe Mat- ~ derlayer radiiR,=25,50, 100 nm. This figure was generated
thews model the strains arising from the dislocations and using Eq.(19) as well, using the same material parameters as
the residual misfit should be added together rather than theith Fig. 2. The solid and dashed lines again correspond to
strain energies themselves in E49). The error that results coherent and dislocated systems, respectively. We see from
from addingstrain energiegather tharstrainsis small when this figure that a nanowire with overlayer radiBs=25 nm
the strain relieved by the dislocation is small compared to thgan accomodate mismatch strains up to the critical vé&lue
misfit strain, and is also small in the case that the dislocatior0.023 before misfit dislocations are introduced. For nano-
energy is highly concentrated in the vicinity of the core.  \yjres with larger diameters, the ability to laterally relax to
relieve mismatch strain becomes inhibited, so that misfit dis-
locations appear at lower values of the lattice mismatch.

This analysis can be used to determine whether the cdFhus, the critical value of the mismatch dropsfte=0.013
herent or dislocated configuration is preferred for a giverfor R,=50 nm andf"~0.007 for particularly large nano-
heterostructured nanowire. wires, R,=100 nm.

It is significant to note that the critical radii so obtained
are typically large compared to the wavelength of an electron

Figure 2 illustrates the dependencem®f (n=0,1) VSR, (as shown in the next sectigrtherefore, the range of com-
for systems with lattice mismatdi+0.01,0.02,0.03, respec- positions, and hence band gaps, over which heterostructures
tively. The figures were generated using Efj9) with pa- may be engineered is not limited by quantum confinement.

Ill. RESULTS AND DISCUSSION

A. Critical radius of heterostructured nanowires
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FIG. 4. Equilibrium diagram illustrating regions iti,R,) space for which ~ FIG. 5. Finite el_ement mesh of heterostructured nanowire system, before
the coherent and dislocated nanowire heterostructures are stable with resp@gd after bonding of interfacef=0.04, \,=\,=60 GPa, andu,=pu,

to each otherB=4, \,=\,=60 GPa, ang,=u,=60 GPa. =60 GPa.
B. Equilibrium diagrams for heterostructured their total value(Figs. 2 and 3 Thus, small adjustments to
nanowires the model can result in substantial changes to the predicted

critical radius. While this is indeed the case, we do believe
that the trends exhibited in Figs. 2—4 capture the system’s
behavior.

To further explore the relationship bet\NeE*gl and mis-
matchf, we have used Eq19) to construct the equilibrium
diagram shown in Fig. 4. Each curveorresponding to a
particular Burger’s vectob) represents the locus of intersec-
tions in (R,,f) space between the curv&s and E,. The  A. Finite element analysis
region to the left of each curve is the coherent region, and the
region to the right is incoherent. We used the same paran}br

eters as beforgs=4, \,=1,,=60 GPa, and,=1.,=60 GPa, layer. We have used the Finite Element Analysis Program
but we illustrate the casds=0.1,0.2,0.3 nm. For reference, 23 . )
(FEAP),“" to determine the actual displacements, stresses, and

we have marked the lines corresponding to the lattice mis:

. . o strains within the nanowire so that we can compare it to our
match associated with some common heteroepitaxial sys-

tems. The behavior captures the essential characteristics deegpressmn(ls). Stress and strain distributions in epitaxial

. . . systems have been explored with finite element analysis pre-
scribed above: smalR, enables lateral relaxation of the viously. for instance Johnson and Ereffdave used a simi-
nanowire, and thus large mismatchesan be accomodated, Y:

while maintaining a coherent interface. Largey restricts lar approach to determine strain energies of islands grown

lateral relaxation, resulting in a decrease in the maximumep'tax'a"y on substrates. The finite element approach that we

mismatch that can be coherently accomodated. implemented uses a two-dimensioniD) aX|§ymmetr|c
. . . . X . model of the nanowire heterostructure. A portion of the as-
According to Fig. 4, dislocations with largbrare admit- . . A
. . constructed meslinear the interfageis illustrated in Fig.
ted into the system only for larger mismatchiesr larger

radii R,. If dislocations with small Burger’s vectors are likely 5(@). The upper regioz>0 contains the overlayer, and the

. . lower regionz<<0 contains the underlayer. The meshes are
to form, then they can be introduced at smaller mismatches . . . -

. I ) . initially defined so that the radii of the overlayer and under-
and smaller nanowire radii. Since the Burger’s vector is usus

ally dictated by the crystal structure and lattice parameters{%ﬁera?(raer;g:[jalg e(aéjgzgo'}?]idca?;zf oglc\)/:rt])orms&]:tg\rfe,r-
the critical radius then depends on the specific material sy y y ' B

tem itself rather than simply on the mismatch and the elastiﬁcayer and underlayer are divided into an v'aquaI. number of
parameters evenly spaced quadrilateral elements. An initial displacement

Lastly, we note that the critical radii shown in Fig. 4 are U ~1 is imposed on the nodes at the overlayer suriz=d

generally in agreement with the critical thicknesses presente%0 that these nodes are mapped on to the corresponding

in Zubia and Herse¥. Zubia and Hersdd considers the ef- nodes of the underlayer surfage0. The two surfaces are
. ' o ; . thus coherently linked together, and then, in dynamic solu-
fect of finite lateral extent on theritical thickness Despite . .
e - . . tion mode, the heterostructure is allowed to relax. The re-
this distinction, it is good that for sufficiently thick epilayers,

the region in(R,,f) space at which the energies becomeIaxecj image is shown in Fig.(B).

. . We studied the displacements, stresses, and strains for
comparable in Zubia and Herseeorresponds well to the ; .
" - . the fully relaxed heterostructure for lattice mismatches 0
critical radii as determined by our approach.

<f=0.06 and for a variety of material parameters to ensure
that our variational approach gives a reasonable estimate of
the strain energy. Examples of the stress distributions that we
In this section, we address some of the assumptions amubtained for one particular case are illustrated in Fig. 6. Our
limitations of the model. As with most critical thickness variational form for the displacements results in an exponen-
models, the total energy curves for the coheréfy) and tially decaying strain energy densifwith decay parameter
dislocated(E;) structures deviate by only a small fraction of «) with coordinatez. To assess this, the strain energy densi-

Our variational formulation assumes a very particular
m for the displacements in both the underlayer and over-

IV. CRITICAL ANALYSIS OF MODEL
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285 marker +; exponential fits to the finite element data are indicated by solid
lines.R,=20 nm,\,=\,=60 GPa, angx,=u,=60 GPa.
394
clear thata obtained from our approadlusingB”, C", and
D" in Eq. (13)] corresponds quite well to the strain energy
o decay constant as obtained by finite elemed(hss differs
“ 579 from the decay constant reported in Ref. 25 due to a typo-
5 graphical error in Ref. 25, wherein rather thar0.375, we
-2.00 should have 2(aR,)=0.375, withR,=20 nm). These fig-
-1.22 ures illustrate thatnot surprisingly « is not, to first order, a

strong function of the lattice mismatch It does vary
slightly with material parameters, but even these variations
034 are quite small. The notion that nanowires with larger radii
are less capable of relaxing laterally to relieve mismatch
strain is supported by the demonstration that the decay con-
191 stants are relatively constant over the range of systems stud-
269 led.

In Fig. 9, we compare the displacemenfsandu; at the
interface from our variational approach to those obtained by
finite element analysis. Our representation of the radial dis-
placementu? is quite good, and both our variational ap-
proach and finite element analysis results affirm that the mis-
match strain is nearly equally partitioned between the
-165 overlayer and underlayéB” ~f/2). Our representation for
u? is not nearly as good, however. It is possible to improve
this by choosing a form fou? andu; with more degrees of
-098 freedom, thus allowing the system to relax more effectively
via z displacements.

-044

113

-1.99

-1.32

-064
-031
0.20
0.08 w— Eq.(13)
oy e finite element analysis
037
0.16

Stress Components(GPa)

Decay Constant o

0.14 \
FIG. 6. Stress fields,,, 0,, and g;, induced in heterostructred nanowire 4 e

system, obtained via finite element analygis0.04,\,=\,=60 GPa, and 0.12
Moo=, =60 GPa.

ties from finite element analysis have been fitted to exponen- 002 003 004 005 0.6

tial functions. The fit as well as the actual data points as Lattice Mismatch f

obtamgd from flnlte glement methods is |II'ustrated inFig. 7.5 o Decay constant for 1=0.01,0.02,0.03,0.04,0.05,0.06, as deter-
for various lattice mismatches. The magnltuqle of the degamned by finite element analysis and EG.5). \,=\,=60 GPa andu,
parametersy for these systems are plotted in Fig. 8. It iS =x,=60 GPa.
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Finite Elements  1aa=- Eq.(5) | ;
v 12 ’

) ) = Finite Elements ’
106 — 10}].... Eq.(15)
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FIG. 9. Comparison between finite elements and ByusingB”, C*, and FIG. 10. Total strai . h t ire het truct f
D" of radial andz displacements in the overlayer at the interfagg. - V. lotai strain energy in conerent nanowire heterostructure as a tunc-

=20 nm,\,=\,=60 GPa,u,=u,=60 GPa, and=0.06. tion of f according to _Eq.(15) is compared with the total strain energy
computed with finite element analysis for the case$
=0.01,0.02,0.03,0.04,0.05,0.08,=20 nm,\,=\,=60 GPa, andu,=p,

Our variational approach takes no account of the stress®0 GPa.
continuity constraints at the interfagEg. (3)]. Interestingly
enough, our approach gives near continuitygfacross the tures, the interface itself is often a slip plane that intersects
interface, whileo,, at the interface is practically equal and the free surface—kinetic barriers may be less significant here
opposite in the overlayer and underlayer. We suspect that tH@an in thin-film systems. Thus, an equilibrium model for
actual value ofo,, in the interface should be zero, such thatnanowires may be even more relevant than it's planar coun-
it changes sign at a given point from the overlayer to theterpart. Alternatively, the surfaces may not be ready sources
underlayer(this can be seen in Fig.)6 for dislocations; this remains to be seen.

In Fig. 10, the strain energy as computed from finite
element analysis is compared to the strain energy as given by CONCLUSIONS
Eq. (15) for various lattice mismatches As Fig. 10 implies, . .
our results are reasonable. The relative error in our expres: We have adapted the critical thickness model of Mat-

sion decreases with the lattice mismatchbut always re- :jhews t_o stlur(ilyt equ![hbrltum a?d C(;her:elniy I'lm'tls mt_one_-
mains within =20% for all f considered herdthe larger Imensional NEIEerostruciures for which ‘ateral retaxation 15

errors at small mismatch may be caused by difficulties inallowed at the boundaries. The results of our model indicate

computing numerically the smaller strain energidde larg- that the adoption of the nanowire geometry yields critical

est contribution to this error arises most likely from the dis-ra.?.II t??l':'alze rOUg?% an order 0; Tatgnltt#deflllargertthan 'It'ue
placementsly anduy and the unrelaxed lateral surfaces. critical thickness of the same substrate-thin fim system. he

implication is that the nanowire geometry should enable in-
tegration of disparate classes of materials that cannot be re-
B. Kinetic considerations alized in planar systems at equilibrium. These results can

, ... . serve as a guide for band structure engineering of nanowire
This model, and the Matthews model, are equilibriumy.tarostructures.

models that do not consider kinetic barriers to dislocation
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