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Due to their unique boundary conditions, nanowire heterostructures may exhibit defect-free
interfaces even for systems with large lattice mismatch. Heteroepitaxial material integration is
limited by lattice mismatches in planar systems, but we use a variational approach to show that
nanowire heterostructures are more effective at relieving mismatch strain coherently. This is an
equilibrium model based on the Matthews critical thickness in which the lattice mismatch strain is
shared by the nanowire overlayer and underlayer, and could as well be partially accomodated by the
introduction of a pair of misfit dislocations. The model is highly portable to other nanowire material
systems and can be used to estimate critical feature sizes. We find that the critical radius of this
system is roughly an order of magnitude larger than the critical thickness of the corresponding thin
film/substrate material system. Finite element analysis is used to assess some aspects of the model;
in particular, to show that the variational approach describes well the decay of the strain energy
density away from the interface. ©2005 American Institute of Physics.
fDOI: 10.1063/1.1903106g

I. INTRODUCTION

A better understanding of heteroepitaxial growth pro-
cesses and interfacial defect formation has resulted in im-
provements to the quality of two-dimensional heteroepitaxial
systems. In semiconductor heteroepitaxy, this has enabled
developments in optoelectronic devices, light-emitting di-
odes, laser diodes, transistors, quantum-cascade lasers, and
many other devices. Yet, heteroepitaxial integration of some
semiconductor systems remains inaccessible due to large lat-
tice mismatches between the materials of interest. A large
lattice mismatch results in poor-quality interfaces with high
misfit dislocation density; these dislocations influence the
electrical behavior in several ways. For instance, they are
preferred sites for impurity atoms, high-diffusivity paths for
dopants, and nonradiative recombination centers. The Si/Ge
heteroepitaxial system is one example where use of the in-
terface as an active device component has remained largely
out of reach due to the large 4% lattice mismatch. In the
InAs/ InP system, only a few atomic layers can be grown
before islands or misfit dislocations form.

The recent demonstrations of coherent, lattice-
mismatched nanowire semiconductor heterostructures1–3 by
the vapor-liquid-solid synthesis mechanism4,5 represent the
first foray into a distinct realm of heterojunction functional-
ity and performance. These longitudinally heterostructured
nanowires enable band gap engineering in one-dimensional
structures, with potential applications towards unique

quantum-dot geometries,pn andpnp junctions, nanowire su-
perlattices, light-emitting devices, and thermoelectric de-
vices. Other nanotube and nanowire interfaces have been
fabricated using a variety of techniques.6–13 Characterization
of the electrical properties of these interfaces has included
photoluminescence spectra6 and current-voltage
analysis.8,9,11,13Remarkably, we have not been able to find
detailed analysis of the atomic structure of the interface,
which we attribute to the relative recency in the fabrication
of controlled, sharp interfacesse.g., see Bjorket al.2d. Yet,
this is sure to follow soon as nanowire and nanotube inter-
faces work their way into the laboratory.

An important manner in which nanowire heterostruc-
tures differ from their planar counterparts is by their elastic
boundary conditions: while a thin film is constrained later-
ally during growth, a nanowire can relieve strain energy via
lateral relaxation. We expect that one-dimensional systems
can be grown defect-free more readily than their two-
dimensional counterparts, and thus they afford the opportu-
nity to integrate classes of materials that, due to large mis-
match, are not realizable in planar systems. The goal of this
work is to explore this possibility quantitatively. The devel-
opment of a simple model that describes coherency limits in
strained heterostructured nanowires is then not only aca-
demically interesting, but it also can be useful to the band
structure and device engineer.

Indeed, recently many scientists have noted the potential
uses of nanostructures as a means of improving interface
quality in heteroepitaxial systems.1,2,14Almost ten years ago,
Luryi and Suhir15 formulated expressions for the critical
thickness for growth of strained heterolayers that include the
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effects of the finite size of the substrate; they show that for
small sizes, the strain energy is much reduced as a result of
lateral relaxation away from the interface. This, idea has
been extended to that of nanoheteroepitaxy,16 in which epil-
ayers are created by coalescense of an array of nanoscale
islands epitaxially grown on lithographically patterned sub-
strates. It is observed that misfit dislocation densities are re-
duced using this approach. Theoretical modeling of the prin-
ciples of nanoheteroepitaxy is detailed in Zubia and
Hersee.17

As the theoretical developments in two-dimensional het-
eroepitaxy have been useful in guiding interface engineering,
we believe that the same will be true for one-dimensional
systems. Thus, we present here a fundamental model, in the
spirit of the Matthews model,18 to predict the critical radius
of a heterostructured nanowire system. Although the effects
of lateral relaxation resulting from finite-size effects have
been explored previously,15,17 here we describe coherency
limits specifically for the one-dimensional nanowire hetero-
structuresother models have been geared towards growth of
thin films on patterned substrates or on the inclusion of
finite-size effects on the strain fields in islandsd. It is quite
likely that further refinements to our model will be made in
the future, as greater experimental understanding of nano-
wire interfacial defects is gained. However, with this initial
attempt, we obtain a glimpse into the nature of the one-
dimensional heterostructure. Finite element analysis is used
to support the variational framework that is developed. Most
importantly, we demonstrate that, due to lateral relaxation at
the boundaries, the one-dimensional heterostructure does of-
fer advantages over conventional two-dimensional interfaces
and is an avenue worth pursuing.

II. EQUILIBRIUM MODEL FORMULATION

A schematic of the heterostructured nanowire is shown
in Fig. 1. The nanowire is oriented along thez axis and
comprises an elastically isotropic underlayer and an elasti-
cally isotropic overlayer, with an interface atz=0. The un-
strainedsi.e., before interfacial bondingd radii of the under-
layer and overlayer are denotedRu and Ro, respectively.
sHere and hereafter, subscripts and superscriptsu ando de-

note the underlayer and the overlayer, respectively.d The lat-
tice mismatch between the overlayer and the underlayer is
denoted byf, where f ù0, and

Ro = s1 − fdRu. s1d

The interface is created by bonding the two semi-infinite
nanowires together atz=0, as illustrated in Fig. 1. The over-
layer, occupyingzù0, 0ø roøRo, is “stretched” and the un-
derlayer, occupyingzø0, 0ø ruøRu, is “squeezed” so that
the two nanowire cross sections are mapped onto each other
at the interface. The mapping is coherent if misfit disloca-
tions do not form, and semicoherent otherwise. The effective
radiusReff at the interface satisfiesRo,Reff,Ru; its precise
value depends on the relative values of the elasticsLaméd
parameters that describe the nanowires:lu, mu, lo, andmo.
Far away from the interface in both the overlayer and under-
layer, the nanowires can relax, and the radii approachRo and
Ru, respectively.sIn the analysis that follows, we will char-
acterize this relaxation by a relaxation distancea; we assume
that both the underlayer and overlayer are long with respect
to the relaxation distancead.

At a given lattice mismatchf, if the radii Ro andRu are
small, the circular cross section of the overlayer will be co-
herently mapped onto that of the underlayer without forma-
tion of misfit dislocations. The system is then elastically
strained, but remains coherent at the interface. Ultimately, as
the radii increase, the system loses its purely one-
dimensional nature, and relaxation of the strain fields away
from the interface is inhibited. For large lattice misfit or for
particularly largeRo andRu, misfit dislocations may arise to
accomodate the mismatch strain. Thus, there is a critical
overlayer radiusRo

* . For Ro,Ro
* , the interface will be coher-

ent and the formation of misfit dislocations is not energeti-
cally favored; otherwise forRo.Ro

* , misfit dislocations can
form to relieve the mismatch strain. The goal of this work is
to describe a model forRo

*sfd, the critical radius as a function
of lattice mismatch.

The development of this critical radius model roughly
parallels the Matthews critical thickness model18 for hetero-
structured thin-films. For a given mismatchf and overlayer
radiusRo, the total strain energy in a coherent nanowire het-
erostructure is compared to the total energysresidual strain
energy and dislocation energyd of a dislocated nanowire het-
erostructure. In the dislocated system, a small portion of the
total mismatchf is accomodated by the dislocations, while
the remaindersthe residual mismatchd is accomodated by
elastic strain in both the underlayer and overlayer. For small
Ro, the coherent system has a lower energy; for largeRo, the
dislocated system has a lower energy. The critical radius at
which the transition occurs,Ro

* , is the radius at which the
total energy for both systems is the same.

In this analysis, as with the Matthews model for epitaxial
thin films, interactions between the dislocations and mis-
match strain fields are not considered. The total strain energy
is considered to be a superposition of the strain energy aris-
ing independently from the residual mismatch and from the
dislocations themselves. This analysis is accurate only when
dislocations account for only a small portion of the entire
misfit strainsand thus is valid when determining the critical

FIG. 1. Schematic of heterostructured nanowire, before and after interfacial
bonding. The misfit dislocation geometry considered here is illustrated as
well.
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size at which dislocations are first introducedd. We restrict
our analysis below to the introduction of only the first pair of
misfit dislocations to avoid thissand otherd complications.

A. Coherent nanowire heterostructure

We first wish to determine an expression for the elastic
strain energy accomodated by the overlayer and the under-
layer for a coherent system. Ideally, it should be possible to

determine the exact solutions to the equations of elasticity
describing the displacement, stress, and strain fields in the
vicinity of the interface. These solutions are axially symmet-
ric. They must as well meet the criterion that, when
dislocation-free, the two cross sections atz=0 arecoherently
mapped onto each other, so that, using a cylindrical coordi-
nate system, the displacements of the underlayer and over-
layer satisfy

H uz
osrus1 − fd,z= 0d = uz

usru,z= 0d
rus1 − fd + ur

osrus1 − fd,z= 0d = ru + ur
usru,z= 0d J 0 ø ru ø Ru, s2d

whereur
o denotes the radial displacements in the overlayer,

uz
o denotes thez displacements in the overlayer,ur

u denotes
the radial displacements in the underlayer, anduz

u denotes the
z displacements in the underlayer.

Also, the stress tensor componentsszz andsrz are con-
tinuous across the interface so that

Hszz
o srus1 − fd,z= 0d = szz

u sru,z= 0d
srz

o srus1 − fd,z= 0d = srz
u sru,z= 0d J 0 ø ru ø Ru.

s3d

In addition to satisfying the constraints in Eqs.s2d and s3d,
the solutions must, as well, leave the free lateral surfaces
traction-free:

Hsrr
o sRus1 − fd,zd = 0

srz
o sRus1 − fd,zd = 0

J zù 0;

Hsrr
u sRu,zd = 0

srz
u sRu,zd = 0

J zø 0. s4d

Determining the exact solutions should be possible with
a stress function approach or by using complex variable
methods, but here we proceed instead by using a variational
approachsprinciple of minimum potential energyd to obtain
an expression for the strain energy in the coherent hetero-
structure. An advantage of this approach is that the critical
radius model becomes a simple tool for the nanodevice en-
gineer to predict the formation of interfacial defects.

We allow relaxation ofboth the underlayer and the over-
layer, and assume the following relationship for the displace-
ment fields:

ur
osro,zd = Bro expF − z

2aRo
G ,

ur
usru,zd = sB − f − fBdru expF z

2as1 − fdRu
G

< sB − fdru expF z

2as1 − fdRu
G ,

uz
osro,zd = sCro + DRodexpF − z

2aRo
G ,

uz
usru,zd = sCs1 − fdru + Ds1 − fdRudexpF z

2as1 − fdRu
G

< sCru + DRudexpF z

2as1 − fdRu
G . s5d

With this choice of radial displacements, the overlayer is
uniformly stretched and the underlayer is uniformly
squeezed. The fieldsuz

o anduz
u are incorporated to allow for

relaxation in thez direction so that the planes of constantz
are not held rigid. We assume that the fields decay exponen-
tially with distance from the interface, with decay parameter
a.0, to reflect the strain energy relaxation that we expect to
see in nanowires. Of course, these displacement fields are not
self-equilibrated nor do they satisfy the free-surface tractions
on the lateral surfacessin the minimum potential energy ap-
proach, they need notd; however the dimensionless varia-
tional parametersB, C, D, anda will be determined by en-
ergy minimization to best reflect the exact displacement
fields. The displacementsur

u and uz
u in the underlayer are

expressed in terms of parametersB, C, and D so that the
conditions in Eq.s2d are satisfied to first order.fNote that in
this formulation, we are neglecting the stress continuity con-
straints of Eq.s3dg. B, where 0øBø f, indicates the degree
of strain partitioning between the overlayer and the under-
layer: for the case that the elastic parameters of the overlayer
and underlayersboth assumed to be isotropicd are identical,
we expectB< f /2; so that the overlayersin tensiond con-
forms to the underlayersin compressiond to the same extent
that the underlayer conforms to the overlayer.

The stresses and strains in the overlayer can be deter-
mined. According to Hookean constitutive behavior,si j

=Cijklekl, where for isotropic materialsCijkl =ldi jdkl

+msdikd jl +dild jkd ssummation convention impliedd. Thus we
have from kinematics that

err
o = B expF − z

2aRo
G ,

114325-3 Ertekin et al. J. Appl. Phys. 97, 114325 ~2005!

Downloaded 09 Jun 2005 to 128.32.120.48. Redistribution subject to AIP license or copyright, see http://jap.aip.org/jap/copyright.jsp



euu
o = B expF − z

2aRo
G ,

ezz
o = −

sCro + DRod
2Roa

expF − z

2aRo
G ,

erz
o =

− Bro + CRoa

4Roa
expF − z

2aRo
G s6d

and from the constitutive relations that

srr
o =

4slo + modBRoa − losCro + DRod
2Roa

expF − z

2aRo
G ,

suu
o =

4slo + modBRoa − losCro + DRod
2Roa

expF − z

2aRo
G ,

szz
o =

4loBRoa − slo + 2modsCro + DRod
2Roa

expF − z

2aRo
G ,

srz
o =

mos− Bro + 2CRoad
2Roa

expF − z

2aRo
G . s7d

Similar expressions are obtained for the underlayer:

err
u = sB − fdexpF z

2as1 − fdRu
G ,

euu
u = sB − fdexpF z

2as1 − fdRu
G ,

ezz
u =

sCru + DRud
2s1 − fdRua

expF z

2as1 − fdRu
G ,

erz
u =

sB − fdru + 2Cs1 − fdRua

4s1 − fdRua
expF z

2as1 − fdRu
G s8d

and

srr
u =

4slo + modsB − fds1 − fdRua + losCru + DRud
2Rua

3expF z

2as1 − fdRu
G ,

suu
u =

4slo + modsB − fds1 − fdRua + losCru + DRud
2Rua

3expF z

2as1 − fdRu
G ,

szz
u =

4losB − fds1 − fdRua + slo + 2modsCru + DRud
2s1 − fdRua

3expF z

2as1 − fdRu
G ,

srz
u =

mossB − fdru + 2Cs1 − fdRuad
2Rus1 − fda

expF z

2as1 − fdRu
G .

s9d

On the interfacial plane, the strains satisfy

uerr
o u + uerr

u u = ueuu
o u + ueuu

u u = uf u s10d

to first order.
Let eo=eosr ,zd= 1

2si j
oei j

o be the strain energy density in
the overlayer andeu=eusr ,zd= 1

2si j
uei j

u be the strain energy
density in the underlayer. The total strain energy in the over-
layer Eo and in the underlayerEu can be obtained by inte-
gration:

Eo =E
0

` E
0

2p E
0

Ro

eosro,zdrodrodudz

=
pRo

3

48a
flos3C2 + 8CsD − 4Bad + 6sD − 4Bad2d

+ mos− 16BCa + B2s3 + 96a2d + 2s3C2s1 + 4a2d

+ 8CD + 6D2ddg s11d

and

Eu =E
−`

0 E
0

2p E
0

Ru

eusru,zdrudrududz

=
pRo

3

48s1 − fd4a
flus3C2 + 8CsD + 4sB − fds1 − fdad

+ 6sD + 4sB − fds1 − fdad2d + mus16CsB − fd

3s1 − fda + sB − fd2s3 + 96s1 − fd2a2d

+ 2s8CD + 6D2 + 3C2s1 + 4s1 − fd2a2dddg. s12d

The total elastic energyEel=Eo+Eu must then be minimized
with respect to the parametersa, B, C, andD. We can solve
for the energy-minimizing decay constanta* in terms of the
other parameters by solving] /]asEeld=0, which gives

a* = s6B2m + 3f2m + 3fBms− 2 +Bs− 2 + fds2 + s− 2 + fdfdd + s3C2 + 8CD + 6D2ds2 + fs− 2 + fds2 + s− 2 + fdfddsl

+ 2mdd1/2/2Î6s1 − fdÎ4fsf − 2Bdsl + md + s2 + fs− 2 + fddsmC2 + 4B2sl + mdd. s13d

Here and hereafter, we assume thatlo=lu=l and mo=mu=m. It is possible to carry through the analysis without this
assumption, but the algebra becomes substantially more tedious while not qualitatively altering the results.sFor particularly
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large elastic mismatches, it may be desirable as well to consider distinct relaxation parametersao andau for the overlayer and
underlayer.d Substitution of Eq.s13d into the expression forEel gives

Eel =
pRo

3

12s1 − fd3s4fsBs3 + fs− 3 + fdd − 1ds3Dl + Cs2l + mdd

+ Î6Îs4f2 − 8Bfdsl + md + s2 + fs− 2 + fddsC2m + 4B2sl + mdd

3 Îsl + 2mds2 + fs− 2 + fds2 + fs− 2 + fddds3C2 + 8CD + 6D2dd. s14d

Of course, this must be minimized with respect to the param-
etersB, C, andD, which set the topology of the interface. We
do this minimization numerically, and denote the energy-
minimizing parameters asB* , C* , andD* , corresponding to
the elastic energyEel

* , so that

Eel
* = uEeluB=B* ,C=C* ,D=D* . s15d

We show in Sec. IV via finite element analysis that this
provides a good estimate for the strain energy in the hetero-
structuresoverestimates the strain energy by approximately
15%d.

B. Energy of misfit dislocations

It is difficult to determinea priori the favored misfit
dislocation configuration in a heterostructured nanowire. The
Matthews model for planar thin films more easily accomo-
dates cubic systems of rectangular cross section, where the
introduction of a perpendicular pair of misfit dislocations
uniformly alters the residual lattice mismatch in both thex
and y directions. Misfit dislocations in cubic thin-film het-
erostructures are often observed to arise in this manner, so
the model is well justified for those systems. As far as we
know, misfit dislocations have not yet been observed in
nanowire heterostructures. In nanowires, as in thin films, the
most likely dislocation configuration should depend on the
crystal structure and orientation. For convenience, we will
study the formation of a pair of misfit dislocations as illus-
trated in Fig. 1. This is not the first time that such a geometry
has been considered; for instance, see Cabrera,19,20who used
a similar geometry to consider misfit dislocations in islands.
It is important to note that this is not necessarily the favored
dislocation configuration. For instance, in systems that have
three-or sixfold crystal symmetry along the wire axis, a per-
pendicular pair is unlikely. The first dislocation in GaN, for
instance, might be an edge partial, since the stacking fault
energy is low. However, the configuration that we have se-
lected makes the analysis amenable to a simple critical radius
model.

Misfit dislocations in the heterostructured nanowire sys-
tem introduce both a core energy and a strain energy. In
planar heterostructured systems with face-centered-cubic lat-
tice structures inh111j or h100j orientation, misfit disloca-
tions are often introduced from the surface via theh111j glide
planes. These dislocations have both edge and screw compo-
nents, but only the edge component of the dislocation re-
duces misfit strain. In nanowire heterostructures, the geom-

etry is likely to permit pure edge dislocations due to the
available slip plane that is coincident with the interface and
intersecting the nanowire surface. Thus, we assume pure
edge dislocations in this model.

We denote the number of dislocation pairs byn, such
that n=0 corresponds to a completely coherent system, and
n=1 corresponds to a system containing one pair of perpen-
dicular edge dislocations. As the formation of the first dislo-
cation is the critical event for a semiconductor material, we
are concerned with the transition from then=0 to then=1
configuration. If we denote the Burger’s vector for each mis-
fit dislocation in the overlayer asb sso that for the two dis-

locations we havebW1=bx̂ and bW2=bŷd, then the residual ra-
dial misfit strainsthat is, the strain not accomodated by the
dislocationd is

uf resu = uf u − uedu = uf u − U nb

2Ro
U . s16d

We limit our analysis to 0øbø2Rof so that the dislocation
cannot overcompensate for the mismatch strainf.

The strain energy per unit length of an edge dislocation
of Burger’s vectorb in an infinite medium is given by

W

L
=

b2

2p

msl + md
sl + 2md

lnSRb

b
D , s17d

whereR is the outer cutoff distance for the strain field andb
is the core energy factor introduced to accomodate the non-
linearities near the dislocation core.21 From this, we assume
that the strain energy arising fromn perpendicular disloca-
tion pairssn=0 or n=1d in the overlayer may be described
by:

Edisl
n = 2ns2Rod

b2

2p

moslo + mod
lo + 2mo

lnSRob

b
D , s18d

where we have taken the radius of the overlayer as the cutoff
for the strain fields. Because we are accounting for the free
surface only by introducing an outer cutoff for the strain
fields, Eq.s18d overestimates somewhat the strain energy of
the dislocation pair. This may, to some degree, offset the
effects of the overestimate to the residual strain energy.

C. Critical radius

For a system containingn=s0,1d dislocation pairs, the
total excess energysresidual elastic strain energy and dislo-
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cation energyd is obtained by combining Eqs.s15d and s18d,
noting that now in Eq.s15d, f → f res and substituting Eq.s16d
for f res

En = Eel
* + Edisl

n . s19d

The residual mismatchf res is used instead off as now only a
portion of the total mismatchf is accomodated “coherently”
sfor the completely coherent case,f res= f; when a dislocation
is present,f res represents the residual mismatch that must be
accomodatedd.

We can use Eq.s19d to compare energies of systems that
are coherent or dislocated. The critical radiusRo

* is deter-
mined by settingE0=E1 and numerically solving forRo. This
is the nanowire analog to the transcendental expression ob-
tained using a total energy approach to critical thicknesses in
thin films. Many such thin-film equations have been obtained
by various authors, we cite here the one described by Nix22

because it most closely parallels our formulation:

d* =
b

8pfs1 + nd
lnSbd*

b
D , s20d

whered* is the critical thickness andn is the Poisson is ratio
for the thin film.

As a final note, in a more accurate formulation of the
critical thickness modelsboth this modelas well asthe Mat-
thews modeld, the strains arising from the dislocations and
the residual misfit should be added together rather than the
strain energies themselves in Eq.s19d. The error that results
from addingstrain energiesrather thanstrainsis small when
the strain relieved by the dislocation is small compared to the
misfit strain, and is also small in the case that the dislocation
energy is highly concentrated in the vicinity of the core.

III. RESULTS AND DISCUSSION

This analysis can be used to determine whether the co-
herent or dislocated configuration is preferred for a given
heterostructured nanowire.

A. Critical radius of heterostructured nanowires

Figure 2 illustrates the dependence ofEn, sn=0,1d vs Ru

for systems with lattice mismatchf =0.01,0.02,0.03, respec-
tively. The figures were generated using Eq.s19d with pa-

rameters typical of semiconducting materials:b=4, b
=0.23 nm,lo=lu=60 GPa, andmo=mu=60 GPa.

In Fig. 2, the solid line corresponds to the energy of a
coherent systemsno dislocationsd, while the dashed line de-
picts the energy of a system with one dislocation pair. In all
cases illustratedsf =0.01,0.02,0.03d, for sufficiently small
Ru, the coherent structure has lower energy. However, asRu

increases, the mismatch strain energy grows. Eventually, it
becomes favorable to reduce the mismatch strain at the cost
of introducing a misfit dislocation. The critical radii at which
this occurs is, according to Fig. 2,Ru

* <60,25,15 nm, re-
spectively, forf =0.01,0.02,0.03. As expected,Ru

* decreases
with increasing mismatchf. By comparison, the critical
thickness of the same material system in thin-film geometry
is d* <2.86,1.07,0.55 nm forf =0.01,0.02,0.03, respec-
tively, according to Eq.s20d. As a rough estimate, it appears
that for a given lattice mismatchf, the critical radius of the
nanowire heterostructure is approximately an order of mag-
nitude sor mored larger than the critical thickness of the
equivalent planar heteroepitaxial system.

Figure 3 shows the total strain energyEn, n=s0,1d ver-
sus lattice mismatchf for nanowire heterostructures with un-
derlayer radiiRu=25,50,100 nm. This figure was generated
using Eq.s19d as well, using the same material parameters as
with Fig. 2. The solid and dashed lines again correspond to
coherent and dislocated systems, respectively. We see from
this figure that a nanowire with overlayer radiusRu=25 nm
can accomodate mismatch strains up to the critical valuef*

=0.023 before misfit dislocations are introduced. For nano-
wires with larger diameters, the ability to laterally relax to
relieve mismatch strain becomes inhibited, so that misfit dis-
locations appear at lower values of the lattice mismatch.
Thus, the critical value of the mismatch drops tof* <0.013
for Ru=50 nm and f* <0.007 for particularly large nano-
wires,Ru=100 nm.

It is significant to note that the critical radii so obtained
are typically large compared to the wavelength of an electron
sas shown in the next sectiond; therefore, the range of com-
positions, and hence band gaps, over which heterostructures
may be engineered is not limited by quantum confinement.

FIG. 2. EnergyEn, n=s0,1d, vs underlayer radiusRu for nanowire hetero-
structures with lattice mismatchf =0.01,0.02,0.03.b=4, b=0.23 nm,lo

=lu=60 GPa, andmo=mu=60 GPa.

FIG. 3. EnergyEn, n=s0,1d, vs lattice mismatchf for nanowire heterostruc-
tures with underlayer radiusRu=25,50,100 nm.b=4, b=0.23 nm,lo=lu

=60 GPa, andmo=mu=60 GPa.
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B. Equilibrium diagrams for heterostructured
nanowires

To further explore the relationship betweenRo
* and mis-

match f, we have used Eq.s19d to construct the equilibrium
diagram shown in Fig. 4. Each curvescorresponding to a
particular Burger’s vectorbd represents the locus of intersec-
tions in sRu, fd space between the curvesE1 and E0. The
region to the left of each curve is the coherent region, and the
region to the right is incoherent. We used the same param-
eters as before:b=4, lo=lu=60 GPa, andmo=mu=60 GPa,
but we illustrate the casesb=0.1,0.2,0.3 nm. For reference,
we have marked the lines corresponding to the lattice mis-
match associated with some common heteroepitaxial sys-
tems. The behavior captures the essential characteristics de-
scribed above: smallRu enables lateral relaxation of the
nanowire, and thus large mismatchesf can be accomodated,
while maintaining a coherent interface. LargerRu restricts
lateral relaxation, resulting in a decrease in the maximum
mismatch that can be coherently accomodated.

According to Fig. 4, dislocations with largerb are admit-
ted into the system only for larger mismatchesf or larger
radii Ro. If dislocations with small Burger’s vectors are likely
to form, then they can be introduced at smaller mismatches
and smaller nanowire radii. Since the Burger’s vector is usu-
ally dictated by the crystal structure and lattice parameters,
the critical radius then depends on the specific material sys-
tem itself rather than simply on the mismatch and the elastic
parameters.

Lastly, we note that the critical radii shown in Fig. 4 are
generally in agreement with the critical thicknesses presented
in Zubia and Hersee.17 Zubia and Hersee17 considers the ef-
fect of finite lateral extent on thecritical thickness. Despite
this distinction, it is good that for sufficiently thick epilayers,
the region in sRu, fd space at which the energies become
comparable in Zubia and Hersee17 corresponds well to the
critical radii as determined by our approach.

IV. CRITICAL ANALYSIS OF MODEL

In this section, we address some of the assumptions and
limitations of the model. As with most critical thickness
models, the total energy curves for the coherentsE0d and
dislocatedsE1d structures deviate by only a small fraction of

their total valuesFigs. 2 and 3d. Thus, small adjustments to
the model can result in substantial changes to the predicted
critical radius. While this is indeed the case, we do believe
that the trends exhibited in Figs. 2–4 capture the system’s
behavior.

A. Finite element analysis

Our variational formulation assumes a very particular
form for the displacements in both the underlayer and over-
layer. We have used the Finite Element Analysis Program
sFEAPd,23 to determine the actual displacements, stresses, and
strains within the nanowire so that we can compare it to our
expressions15d. Stress and strain distributions in epitaxial
systems have been explored with finite element analysis pre-
viously, for instance Johnson and Freund24 have used a simi-
lar approach to determine strain energies of islands grown
epitaxially on substrates. The finite element approach that we
implemented uses a two-dimensionals2Dd axisymmetric
model of the nanowire heterostructure. A portion of the as-
constructed meshsnear the interfaced is illustrated in Fig.
5sad. The upper regionz.0 contains the overlayer, and the
lower regionz,0 contains the underlayer. The meshes are
initially defined so that the radii of the overlayer and under-
layer are unstrainedsunbondedd; for a given mismatchf,
they are related by Eq.s1d. The cutsz=0 on both the over-
layer and underlayer are divided into an equal number of
evenly spaced quadrilateral elements. An initial displacement
ur , r is imposed on the nodes at the overlayer surfacez=0
so that these nodes are mapped on to the corresponding
nodes of the underlayer surfacez=0. The two surfaces are
thus coherently linked together, and then, in dynamic solu-
tion mode, the heterostructure is allowed to relax. The re-
laxed image is shown in Fig. 5sbd.

We studied the displacements, stresses, and strains for
the fully relaxed heterostructure for lattice mismatches 0
ø f ø0.06 and for a variety of material parameters to ensure
that our variational approach gives a reasonable estimate of
the strain energy. Examples of the stress distributions that we
obtained for one particular case are illustrated in Fig. 6. Our
variational form for the displacements results in an exponen-
tially decaying strain energy densityswith decay parameter
ad with coordinatez. To assess this, the strain energy densi-

FIG. 4. Equilibrium diagram illustrating regions insf ,Rud space for which
the coherent and dislocated nanowire heterostructures are stable with respect
to each other.b=4, lo=lu=60 GPa, andmo=mu=60 GPa.

FIG. 5. Finite element mesh of heterostructured nanowire system, before
and after bonding of interface.f =0.04, lo=lu=60 GPa, andmo=mu

=60 GPa.
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ties from finite element analysis have been fitted to exponen-
tial functions. The fit as well as the actual data points as
obtained from finite element methods is illustrated in Fig. 7
for various lattice mismatches. The magnitude of the decay
parametersa for these systems are plotted in Fig. 8. It is

clear thata obtained from our approachfusing B* , C* , and
D* in Eq. s13dg corresponds quite well to the strain energy
decay constant as obtained by finite elementssthis differs
from the decay constant reported in Ref. 25 due to a typo-
graphical error in Ref. 25, wherein rather thana=0.375, we
should have 2/saRod=0.375, with Ro=20 nm.d. These fig-
ures illustrate thatsnot surprisinglyd a is not, to first order, a
strong function of the lattice mismatchf. It does vary
slightly with material parameters, but even these variations
are quite small. The notion that nanowires with larger radii
are less capable of relaxing laterally to relieve mismatch
strain is supported by the demonstration that the decay con-
stants are relatively constant over the range of systems stud-
ied.

In Fig. 9, we compare the displacementsur
o anduz

o at the
interface from our variational approach to those obtained by
finite element analysis. Our representation of the radial dis-
placementur

o is quite good, and both our variational ap-
proach and finite element analysis results affirm that the mis-
match strain is nearly equally partitioned between the
overlayer and underlayersB* < f /2d. Our representation for
uz

o is not nearly as good, however. It is possible to improve
this by choosing a form foruz

o anduz
u with more degrees of

freedom, thus allowing the system to relax more effectively
via z displacements.

FIG. 6. Stress fieldssrr , szz, and srz induced in heterostructred nanowire
system, obtained via finite element analysis.f =0.04, lo=lu=60 GPa, and
mo=mu=60 GPa.

FIG. 7. Strain energy density in overlayer and underlayer forf
=0.01,0.02,0.03,0.04,0.05,0.06. Finite element results are indicated by the
marker1; exponential fits to the finite element data are indicated by solid
lines.Ru=20 nm,lo=lu=60 GPa, andmo=mu=60 GPa.

FIG. 8. Decay constanta for f =0.01,0.02,0.03,0.04,0.05,0.06, as deter-
mined by finite element analysis and Eq.s15d. lo=lu=60 GPa andmo

=mu=60 GPa.
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Our variational approach takes no account of the stress
continuity constraints at the interfacefEq. s3dg. Interestingly
enough, our approach gives near continuity ofsrz across the
interface, whileszz at the interface is practically equal and
opposite in the overlayer and underlayer. We suspect that the
actual value ofszz in the interface should be zero, such that
it changes sign at a given point from the overlayer to the
underlayersthis can be seen in Fig. 6d.

In Fig. 10, the strain energy as computed from finite
element analysis is compared to the strain energy as given by
Eq. s15d for various lattice mismatchesf. As Fig. 10 implies,
our results are reasonable. The relative error in our expres-
sion decreases with the lattice mismatchf, but always re-
mains within <20% for all f considered heresthe larger
errors at small mismatch may be caused by difficulties in
computing numerically the smaller strain energiesd. The larg-
est contribution to this error arises most likely from the dis-
placementsuz

o anduz
u and the unrelaxed lateral surfaces.

B. Kinetic considerations

This model, and the Matthews model, are equilibrium
models that do not consider kinetic barriers to dislocation
introduction. Often, in planar heterostructures, thin films are
grown dislocation-free well beyond the critical thickness be-
cause of the high-energy barriers to dislocation introduction.
These planar heterostructures remain in a metastable coher-
ent state.26,27Kinetics may be a consideration in heterostruc-
tured nanowires as well. However, in nanowire heterostruc-

tures, the interface itself is often a slip plane that intersects
the free surface—kinetic barriers may be less significant here
than in thin-film systems. Thus, an equilibrium model for
nanowires may be even more relevant than it’s planar coun-
terpart. Alternatively, the surfaces may not be ready sources
for dislocations; this remains to be seen.

V. CONCLUSIONS

We have adapted the critical thickness model of Mat-
thews to study equilibrium and coherency limits in one-
dimensional heterostructures for which lateral relaxation is
allowed at the boundaries. The results of our model indicate
that the adoption of the nanowire geometry yields critical
radii that are roughly an order of magnitude larger than the
critical thickness of the same substrate-thin film system. The
implication is that the nanowire geometry should enable in-
tegration of disparate classes of materials that cannot be re-
alized in planar systems at equilibrium. These results can
serve as a guide for band structure engineering of nanowire
heterostructures.
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